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* Will focus on wireless protocols (my

research focus)

* Similar techniques can be extended to wired
802 standards
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> 4x Human Population!
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Note: Non-loT includes all mobile phones, tablets, PCs, laptops, and fixed line phones. loT includes all consumer and B2B devices connected — see loT break-down for further details
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Living Beings

Objects

Technologies
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The loT environment changes unpredictably
and the millisecond level (optimistically)

Static, manual, explicit resource optimization is
likely to not be the best option

Security, reconfigurability, adaptability,
resilience must be embedded in the loT
by design
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Radio FNinting Modulat%ognition
Spec%nsing Dynamic %m Access

NOT IN IEEE 802 STANDARDS!
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How wireless
networks are
optimized today
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Model
¢ Optimality Exists
e Network

e Channel

® Interactions

Constraints

e Physical
® Economical

Solve
® Inner-point

® Gradient descent
o
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¢ Simple, Feasible Approach

x Not Generalizable

x Limited Spectrum Agility

x Heuristic Algorithms

TM(802. | 1)

(802.15.4)

(802.15.1)

zigbee ;
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We must rethink how to do
network optimization

Model-Driven Protocol-Driven

| |
v

Effective AND Real-Time
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Neural ==’ “QPSK”

Extraction Network

What are the “right” features!?

What if | want to change classification problem?

Deep v
Neural => “QPSK”

Network
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F. Restuccia and T. Melodia, “Big Data Goes Small: Real-Time Spectrum-Driven Embedded Wireless Networking Through Deep
Learning in the RF Loop,” IEEE INFOCOM 2019

F. Restuccia and T. Melodia, “PolymoRF: Polymorphic Wireless Receivers Through Physical-Layer Deep Learning,” ACM

MobiHoc 2020, SIGMOBILE Research Highlights 2020, Communications of the ACM Research Highlight. 13



Institute for the Wireless

Self-Adaptive Spectrum-Aware Transmitters N.memetofmngs

at Northeastern

(3)‘ DRL (4) Polymorphic
|_|——> Execution l:> Wireless TX Logic
Network (FPGA / Hardware) DRL (FPGA / Hardware)
Action
State 2 Deep NN I/Q (5)
b &)
Parameters Data
o Wireless
(1) DRL Training Apnlication
{:> (CPU / Software) (CPU / Software)

F. Restuccia and T. Melodia, “DeepWiIERL: Bringing Deep Reinforcement Learning
to the Internet of Self-Adaptive Things,” IEEE INFOCOM 2020
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Deep Learning for Beam Management
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I Signals used for beam management
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M. Polese, F. Restuccia, and T. Melodia, “DeepBeam: Deep Waveform Learning for Coordination-Free Beam
Management in mmWave Networks,” ACM MobiHoc 2021.
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Deep Learning for Radio Fingerprinting
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Testing Accuracy
Per-Slice / Per-Transmission Accuracy (PSA/PTA)

Task Description # of Devices
Al Very High Population 10,000
A2 High Population 1000
A3 Medium Population 500
A4 Low Population 100
Bl Train One Day Test Another 50
B2 Train on a Mix of Days Test on a Mix 100
B3 Train and Test on a Single Day 100
Cl SNR: Train High Test Medium 100
C2 SNR: Train High Test Low 100
C3 SNR: Train Medium Test High 100
C4 SNR: Train Medium Test Low 100
G5 SNR: Train Low Test High 100
C6 SNR: Train Low Test Medium 100

Task WiFi
Raw 1/Q before FFT Equalized

Baseline ResNet-50-1D Baseline ResNet-50-1D
Al 0.082 /7 0.130 0.164 / 0.262 0.062 / 0.101 0.014 / 0.030
A2 (0.299 / 0.378 0.393 / 0.612 0.327 / 0.434 0.392 / 0.555
A3 0.354 / 0.398 0.467 / 0.629 0.454 / 0.478 0.430 / 0.549
A4 0.335/ 0.575 0.490 / 0.631 0.762 / 0.639  0.699 / 0.637
Bl 0.017 7/ 0.016 0.013 7/ 0.012 0.232 / 0.335 0.175 7 0.258
B2 0.444 / 0.695 0.520 / 0.811 0.678 / 0.674 0.751 7/ 0.735
B3 0.310 7/ 0.598 0.441 / 0.746 0.210 7/ 0.432 0.308 / 0.542

A.Al-Shawabka, F. Restuccia, S. D’Oro,T. Jian, B. Costa Rendon, N. Soltani, . Dy, K. Chowdhury, S.
loannidis and T. Melodia, “Exposing the Fingerprint: Dissecting the Impact of the Wireless Channel on
Radio Fingerprinting,” IEEE INFOCOM 2020.
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F. Restuccia and T. Melodia, “Deep Learning at the Physical Layer: System Challenges and Applications to 5G

and Beyond,” IEEE Communications Magazine, Vol. 58, Is. |0, October 2020. 17
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Also, let’s not forget...
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* We now understand Al/ML can be a tremendous resource

* Lingering issues:

* How do we transition from research to 802 standard?

* Bridge the existing gap b/w academia/standard communities

* How do we make these models smaller, faster, more accurate!?

* Great research & development opportunities
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Thanks!
Questions!?
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