	Project
	IEEE 802.21 MIHS

<http://www.ieee802.org/21/>

	Title
	State Machine SB Comments

	DCN
	21-07-0302-00-0000

	Date
Submitted
	November 2007

	Source(s)
	Yoshihiro Ohba, Miriam Tauil
	

	Re:
	IEEE 802.21 Session #23 in Atlanta, GA

	Abstract
	This contribution proposes resolution to SB comments related to the MIH transaction State Machines.

	Purpose
	Provide the complete and clear MIH transaction description through the state machines.

	Notice
	This document has been prepared to assist the IEEE 802.21 Working Group. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that IEEE 802.21 may make this contribution public.

	Patent Policy
	The contributor is familiar with IEEE patent policy, as stated in Section 6 of the IEEE-SA Standards Board bylaws <http://standards.ieee.org/guides/bylaws/sect6-7.html#6> and in Understanding Patent Issues During IEEE Standards Development http://standards.ieee.org/board/pat/faq.pdf

Introduction

This contribution addresses a number of SB comments related to the transaction state machines. This contribution is mainly driven by SB comment 11 and its suggested remedy.

Comment 11:

The MIH protocol is inadequately specified. In particular, the state machine is overly simplified, and none of the state variables are rigorously or formally defined.

Comment 11 Suggested Remedy:

Include a formal specification of the MIH protocol, either as a completely defined state machine (in the manner of IEEE 802.3), a reference code specification (in the manner of IEEE 802.1), or a formalized language (in the manner of IEEE 802.11).

Additional related comments are addressed too. The comment numbers and their content are specified in Annex A.

The main changes from draft D7.01 are the following:

1. The format of the state machines has been changed to be consistent with other IEEE standard (chosen format of 802.1X specification), based on the recommendation of comment SB 11.

2. Details such as retransmission timers and counter that were omitted from the state diagrams are now included. Please note that the initial proposed state machines included these timers, and these were removed due to group members’ feedback at that time.

3. Broadcasting of MIH capability messages has been added.

Proposed Changes
[1] This contribution suggests replacing section “8.2.2 MIH protocol transaction state diagram” in draft 7.1, by the following text:

8.2.2 MIH protocol transaction state diagram
This clause describes the state diagram for a MIH transaction. A MIH transaction is identified by a sequence of messages with the same Transaction-ID submitted to; or received from one specific remote MIHF ID.
8.2.2.1 State machines

A node that has a new available message to send related to a new transaction is called transaction source and shall start the transaction source state machine. In the same manner, a node that receives a message related to a new transaction is called transaction destination node and shall start the destination transaction state machine.

If the ACK feature is being used by the source and/or destination transaction node, the ACK-Requestor and/or ACK-Responder state machine/s shall be started (specific conditions specified below). The ACK related state machine/s shall be run in parallel to the transaction source/destination state machines. The conditions and transitions in the state machines running in one MIHF can be affected by the same global variables. There are no cases where two or more state machines running at the same time can write the value of the same variables.
Figure X1 illustrates the interaction of transaction source/destination state machines with the ACK related state machines.

[image: image1]
Figure X1- State machine interactions

8.2.2.2 Notational conventions used in state diagrams

State diagrams are used to represent the operation of an MIH transaction as a group of connected, mutually exclusive states. Only one state of each state machine can be active at any given time.
Each state is represented in the state diagram as a rectangular box, divided into two parts by a horizontal line. The upper part contains the state identifier, written in uppercase letters. The lower part contains any procedures that are executed on entry to the state.

All permissible transitions between states are represented by arrows, the arrowhead denoting the direction of the possible transition. Labels attached to arrows denote the condition(s) that shall be met in order for the transition to take place.
A transition that is global in nature (i.e., a transition that occurs from any of the possible states if the condition attached to the arrow is met) is denoted by an open arrow; i.e., no specific state is identified as the origin of the transition.

On entry to a state, the procedures defined for the state (if any) are executed exactly once, in the order that they appear on the page. Each action is deemed to be atomic; i.e., execution of a procedure completes before the next sequential procedure starts to execute. No procedures execute outside of a state block. On completion of all of the procedures within a state, all exit conditions for the state (including all conditions associated with global transitions) are evaluated continuously until such a time as one of the conditions is met. All exit conditions are regarded as Boolean expressions that evaluate to TRUE or FALSE; if a condition evaluates to True, then the condition is met.
The label UCT denotes an unconditional transition (i.e., UCT always evaluates to TRUE).
A variable that is set to a particular value in a state block retains this value until a subsequent state block executes a procedure that modifies the value.
Should a conflict exist between the interpretation of a state diagram and either the corresponding global transition tables or the textual description associated with the state machine, the state diagram takes precedence.
The interpretation of the special symbols and operators used in the state diagrams is defined in Table X1; these symbols and operators are derived from the notation of the “C” programming language, ANSI X3.159.
Table X1—State machine symbols

	
	Symbol Interpretation

	()
	Used to force the precedence of operators in Boolean expressions and to delimit the argument(s) of actions within state boxes.

	;
	Used as a terminating delimiter for actions within state boxes. Where a state box contains multiple actions, the order of execution follows the normal English language conventions for reading text.

	=
	Assignment action. The value of the expression to the right of the operator is assigned to the

variable to the left of the operator. Where this operator is used to define multiple assignments,

e.g.,

a = b = X

the action causes the value of the expression following the right-most assignment operator to be assigned to all of the variables that appear to the left of the right-most assignment operator.

	!
	Logical NOT operator.

	&&
	Logical AND operator.

	||
	Logical OR operator.

	if...then...
	Conditional action. If the Boolean expression following the if evaluates to TRUE, then the action following the then is executed.

	{statement 1, ... statement N}
	Compound statement. Braces are used to group statements that are executed together as if they were a single statement.

	!=
	Inequality. Evaluates to TRUE if the expression to the left of the operator is not equal in value to the expression to the right.

	==
	Equality. Evaluates to TRUE if the expression to the left of the operator is equal in value to the expression to the right.

	<
	Less than. Evaluates to TRUE if the value of the expression to the left of the operator is less than the value of the expression to the right.

	>
	Greater than. Evaluates to TRUE if the value of the expression to the left of the operator is greater than the value of the expression to the right.

	>=
	Greater than or equal to. Evaluates to TRUE if the value of the expression to the left of the operator

is either greater than or equal to the value of the expression to the right.

	+
	Arithmetic addition operator.

	–
	Arithmetic subtraction operator.

8.2.2.3 Global variables

Global variables are available for use by more than one state machine and are used to perform interstate-machine communication and initialization functions.

Exported variables are global variables that are also readable and writable from entities external to the state machines. The global and external variables are specified in tables X3 and X4, respectively.
Table X3 – Global state machine variables

	Name
	Type
	Description

	Opcode
	OPCODE
	An Opcode.

	TID
	TID
	A transaction identifier.

	MID
	MID
	A message identifier.

	StartACKRequestor
	BOOLEAN
	When its value turns to TRUE the ACK-requestor state machines is started. While its value is TRUE it indicates that the ACK requestor state machine is running.

	StartACKResponder
	BOOLEAN
	When its value turns to TRUE the ACK-responder state machines is started. While its value is TRUE it indicates that the ACK responder state machine is running.

	AckFailure
	BOOLEAN
	Indicates if ACK operation failed

	TransactionStopWhen
	UNSINGED_INT(1)
	A timer to stop the transaction.

	RetranmissionWhen
	UNSIGNED_INT(1)
	A timer to retransmit a message.

	DelayedAckWhen
	UNSIGNED_INT(1)
	A timer to send a delayed acknowledgment.

Table X4 – Exported state machine variables
	Name
	Type
	Description

	Initialize
	BOOLEAN
	Indicates that a transaction state machine has been initialized.

	MsgIn
	MIH_MESSAGE
	Incoming Message. Message received by the local MIHF from a remote MIHF.

	MsgInAvail
	BOOLEAN
	Indicates if there is an incoming message for the transaction.

	MsgOut
	MIH_MESSAGE
	Outgoing Message. Message generated by the local MIHF to be sent to the remote MIHF.

	MsgOutAvail
	BOOLEAN
	Indicates if there is an outgoing message for the transaction.

	TransactionStatus
	ENUMERATED
	Indicates the status of the transaction. This variable is written by the state machine and read by the MIHF. The following values are valid:

1 ONGOING

2 SUCCESS

3 FAILURE

8.2.2.4 Global procedures

a) void Process(MIH_MESSAGE) – This procedure processes the incoming message passed as an input variable.

b) void Transmit(MIH_MESSAGE) - This procedure transmits the message passed as the input variable.
c) BOOLEAN IsBroadcastMsg(MIH_MESSAGE)- This procedure outputs TRUE if the input message has a broadcast destination MIHF ID. Otherwise outputs FALSE.
d) MIHF_ID SrcMIHF_ID(MIH_MESSAGE) – This procedure obtains a Source Identifier TLV from the message passed as the input and returns the value of the TLV.

e) MIHF_ID DstMIHF_ID(MIH_MESSAGE) – This procedure obtains a Destination Identifier TLV from the message passed as the input and returns the value of the TLV.
8.2.2.5 Global constants
a) TransactionLifetime – The maximum time from the initiation of a transaction until its termination.
b) Request – An OPCODE value of 0x1.

c) Response – An OPCODE value of 0x2.

d) Indication – An OPCODE value of 0x3.

8.2.2.6 Timers

The timers defined for these state machines are decremented, if their value is nonzero, by the operation of Transaction Timers state machine. All timers have a resolution of one second, i.e., the initial values used to start the timers are integer values, and they represent the timer period as an integral number of seconds.
8.2.2.6.1 Local variables and procedures
Tick - This variable is set in response to a regular one-second tick generated by an external system clock function. Whenever the system clock generates a one-second tick, the tick variable is set to TRUE. The variable is set to FALSE by the operation of the state machine. The operation of the system clock functions is not otherwise specified by the standard.
void dec(Timer) – This procedure decrements the timer only if its value is greater than 0.
8.2.2.6.2 Transaction Timers state machine
The Transaction Timers state machine for a given transaction is responsible for decrementing the timer variables for this transaction each second, in response to an external system clock function. The timer variables are used, and set to their initial values, by the operation of the individual state machines for the transaction.

[image: image2]
Figure X2-Transaction Timers state machine

8.2.2.7 Transaction source and destination state machines

8.2.2.7.1 Local variables

a) IsBroadcast – This variable’s type is Boolean. When its value is TRUE it indicates that a message has a broadcast destination MIHFID. Otherwise, its value is FALSE.
8.2.2.7.2 Local procedures

a) TID NewTID(void) – This procedure generates a new transaction ID for the transaction generated by the new available message.

b) UNSIGNED_INT(1) GetAckDelay(MID) - This procedure computes the time duration for delaying an ACK using MID of a message. Especially the output value is always zero (0) if MID.OPCODE==Indication or MID.OPCODE==Response. If MID.OPCODE==Request, the time duration for delaying the ACK may depend on MID.SID and MID.AID.
8.2.2.7.3 Transaction source state machine
The transaction source state machine shall be started, and related transaction initiated; when a message related to a new transaction is available to be sent (MsgOutAvail is TRUE). The transaction terminates when it transits to the SUCCESS state and any ACK related state machines if started were terminated; or if it transits to the FAILURE state.

 SUCCESS

FAILURE
 TransactionStatus =SUCCESS

 TransactionStatus=FAILURE

Figure X3-Transaction source state machine
8.2.2.7.4 Transaction destination state machine
The transaction destination state machine shall be started, and related transaction initiated; when a message related to a new transaction is received (MsgInAvail is TRUE).

The transaction terminates when it transits to the FAILURE state or SUCCESS state and any ACK related state machines, if started were terminated.

Figure X4-Transaction destination state machine
8.2.2.8 ACK related state machines

The ACK-requestor state machine is started when the StartAckRequest variable turns TRUE and ACK-responder state machine is started when StartAckResponder variable turns TRUE.
8.2.2.8.1 Local variables

a) DUP – This variable is of type MIH_MESSAGE and represents an MIH message which has already been sent. This variable is used within ACK Responder state machine.
b) ACK – This variable is of type MIH_MESSAGE and represents an MIH message with the ACK-Rsp bit set and the same message ID and transaction ID as the MIH message it acknowledges. This variable is used within ACK Responder state machine.
c) RtxCtr - This variable is of type UNSIGNED_INT(1) and represents a number of retransmissions of a specific message. This variable is used within ACK Requestor state machine.
d) AckDelayTime – This variable is of type UNSIGNED_INT(1) . It represents the maximum time that a MIH request with Ack-Req set receiver should wait for the generation of a MIH response before sending a ACK message. If the response is available to be sent before AckDelayTime, the Acknowledgement will be piggyback in the response message and there is no need to send ACK message.

8.2.2.8.2 Local Constants
a) RetransmissionInterval – The time interval between two subsequent transmissions of a specific message.
b) RtxCtrMax – The maximum number of times that a message will be retransmitted, if retransmission conditions occur.
The maximum number of retransmissions and retransmission interval may depend on the characteristics of underlying transport. These shall be defined as configuration parameters of an implementation, possibly in a future defined MIB.

Note that the maximum number of retransmission is bounded by the transaction lifetime.
8.2.2.8.3 ACK requestor state machine
The ACK requestor state machine shall be started, when the StartAckRequestor variable turns to TRUE in a source or destination transaction state machine. This state machine uses the global variables set by the originating state machine. This state machine terminates when it transits to the FAILURE state or SUCCESS state.

	RETRANSMIT

	Transmit(MsgOut);

RtxCtr++

Figure X5-ACK requestor state machine
8.2.2.8.4 ACK responder state machine

The ACK responder state machine shall be started, when the StartAckResponder variable turns to TRUE in a source or destination transaction state machine. This state machine uses the global variables set by the originating state machine. This state machine terminates when it transits to SUCCESS state.

Figure X6-ACK responder state machine

[2] This contribution also suggests adding the following Annex in Annex B:
Annex B.2.17 Data Types for MIH Protocol Message

Table X – Data types for MIH Protocol Message
	Data Type Name
	Derived From
	Definition
	Valid Range

	MIH_MESSAGE
	SEQUENCE{

 VERSION,

 ACK_REQ,

 ACK_RSP,

 UIR,

 BITMAP(9),

 MID,

 TID,

 PAYLOAD)
	A data type for representing an MIH Protocol message including header.
	N/A

	VERSION
	BITMAP(4)
	Version field
	[0x0, 0xf]

	ACK_REQ
	BITMAP(1)
	Ack-Req bit field
	[0x0,0x1]

	ACK_RSP
	BITMAP(1)
	Ack-Rsp bit field
	[0x0,0x1]

	UIR
	BITMAP(1)
	UIR bit field
	[0x0,0x1]

	MID
	SEQUENCE{

 SID,

 OPCODE,

 AID)
	Message Identifier
	N/A

	TID
	UNSIGNED_INT(4)
	Transaction Identifier
	[0,2^16-1]

	SID
	BITMAP(4)
	Service ID
	[0x1,0x4]

	OPCODE
	BITMAP(2)
	Opcode
	[0x1,0x3]

	AID
	BITMAP(10)
	Action ID
	[0x01,0x3f]

[3] Add the following data type in Table B-1:
	Data Type Name
	Definition
	Range
	Binary Encoding Rule

	PAYLOAD
	A data type for representing the combination of the variable load length part of MIH Protocol Header and the MIH protocol payload part.
	N/A
	The variable load length part is encoded in the first two octets in network-byte order. The MIH protocol payload part follows the variable length part and is encoded as a sequence of TLVs as specified in Clause 8.4.1.

References:

1. IEEE Std 802.1X™-2004 – Port-Based Network Access Control
2. MIH Protocol State Machine - 21-06-0734-00-0000-MIH-State-Diagrams.ppt – Telcordia and Toshiba

3. Transaction state diagram for MIH_Capability_Discovery - 21-07-0316-00-0000-MIH_Capability_Discovery.doc – by Ronny Kim, Jin Lee (LG Electronics, Inc)
Annex A: Additional SB Comments addressed by this contribution

Retransmissions in state Diagrams
Comments 568, 569

Figure 22/24: The state diagram in Figure does not match the description in the text. More specifically, the state diagram does not show that retransmission shall happen only twice. Note that the IEEE SA has ruled that state diagrams are normative, which means that the state diagram must be correct.

Comments 56, 57, 58- p. 145, l. 34 , 8.2.2.1/2/3

The text states a transition from SENDING to INIT after two (unsuccessful) retransmission but the state machine does not reflect this.

Text states that max. 2 retransmissions are allowed but the state machine does reflect this
Retransmission – why 2 times?

Comment 231: There seems to be arbitrary decisions made regarding the MIH Protocol Acknowledgement operation. For example, why re-transmit only 2 times? Such variables are usually expressed in a MIB. What about the possibility of aggregated Ack messages?

Suggested Remedy: Restrict description of MIH Acknowledgement operation to the messages exchange. Implementation details should be left out or else in the Annex

Comment 2 : "The source MIH node may at most make two retransmission attempts in addition to the first attempt for an MIH protocol message with the same Message-ID and the same Transaction-ID.“ What's special about "two"? Why this embedded magic number?

This depends on the properties of the link, and couples the protocol to assumptions about the medium.

Suggested Remedy: Make this number a property of the link type.

Error condition transitions in the state machines

Comment 336:

What if a source node can not receive any answer even it sent a REQ? and also what if a destination node can not give any response even if it receives a REQ? Therefore, I suggest all states except INIT should have transition to INIT when the transaction time expires.

Make transition to INIT in all states when the transaction time expires, page 145-146.
Capability Discover
Comment 193: page 154 line 5

The broadcasting of this message cannot be consumed by any of the state diagrams in 8.2. New state machines need to be added to permit transmission and reception of this very special case. None of the current state diagrams can be used because they all include the ack/rep bit behavior, which cannot be used in these cases.

Add new state diagrams, or remove this capability and any associated material from the entire draft.
Comment 338:
There is no transaction state diagram for broadcast MIH_Capability_Discover message.

Refer to contribution, 21-07-0316-00-0000-MIH_Capability_Discovery

State Machine Description

Comments that relate to the text of the 7.1 state machines will not be applicable if this contribution is accepted. This statement applies to the following comment numbers:

284, 285, 287-291.

Local Interaction via global variables

Remote Interaction via MIH protocol

OpCode specific Handling

ACK/Retransmission

 Handling

ACK-responder

State Machine

ACK-requestor

State Machine

ACK-responder

State Machine

ACK-requestor

State Machine

Transaction Destination

State Machine

Transaction Source

State Machine

MsgInAvail&&

MsgIn.TID==MsgOut.TID&&

IsBroadcast

Opcode==Indication ||

(Opcode==Response && IsBroadcast)

Opcode==Request

! IsBroadcast ||

TransactionStopWhen==0

PROCESS_MSG

StartAckResponder=

 (MsgIn.ACK_REQ == 1 ? TRUE : FALSE);

Process(MsgIn);

MsgInAvail=FALSE;

MsgInAvail && MsgIn.TID==MsgOut.TID && (SrcMIHFID(MsgIn)==DestMIHFID(MsgOut) ||

 IsBroadcast)

MsgOutAvail

TransactionStopWhen==0

 || AckFailure

WAIT_RESPONSE_MSG

INIT

Initialize=TRUE;

TransactionSatus=ONGOING;

MsgOutAvail=MsgInAvail=FALSE;

StartAckRequestor=StartAckResponder=FALSE;

AckFailure=FALSE;

TransactionStopWhen=TransactionLifetime;

Opcode=MsgOut.OPCODE;

MsgOut.TID=NewTID();

Transmit(MsgOut);

IsBroadcast:=IsBroadcastMsg(MsgOut);

StartAckRequestor=(MsgOut.ACK_REQ==1?TRUE:FALSE) && !IsBroadcast;

UCT

Opcode==Request

Opcode==Indication ||

(IsBroadcast &&

Opcode ==Response)

MsgOutAvail&&

(!StartAckResponder ||

MsgOut.ACK_RSP==1)

WAIT_RESPONSE_PRM

SEND_RESPONSE

StartAckRequestor=(MsgOut.ACK_REQ==1 ? TRUE : FALSE);

MsgOut.TID=MsgIn.TID;

Transmit(MsgOut);

TransactionStopWhen==0

MsgInAvail

SUCCESS

UTC

UCT

RetransmissionWhen==0&&

RtxCtr<RtxCtrMax

StartAckRequestor

RetransmissionWhen==0

&&RtxCtr==RtxCtrMax

MsgInAvail&&

MsgIn.ACK_REQ==1&&

MsgIn.TID==MsgOut.TID&&

DestMIHFID(MsgOut)==

SrcMIHFID(MsgIn)

FAILURE

AckFailure=TRUE;

SUCCESS

WAIT_ACK

RetransmissionWhen=RetransmissionInterval;

INIT

RtxCtr=0;

TransactionStopWhen==0

TransactionStopWhen==0

TransactionStopWhen==0

SUCCESS

MsgInAvail &&MsgIn.TID== TID && DestMIHFID(ACK)==SrcMIHFID(MsgIn)

RETURN_DUPLICATE

Transmit(DUP);

MsgInAvail=FALSE;

MsgInAvail &&

MsgIn.TID== TID&&

DestMIHFID(ACK)==

SrcMIHFID(MsgIn)

MsgOutAvail

StartAckResponder

INIT

ACK.ACK_REQ=0; ACK.ACK_RSP=1;

ACK.(MID, TID)=(MID,TID);

AckDelayTime=GetAckDelay(MID);

AckDelayTime==0

PIGGYBACKING

DUP=MsgOut;

MsgOut..ACK_RSP=1;

DelayedAckWhen==0

MsgOutAvail

AckDelayTime>0

DELAYING_ACK

DelayedAckWhen= AckDelayTime；

RETURN_ACK

Transmit(ACK);

MsgInAvail=FALSE;

TransactionStatus = FAILURE

UCT

Tick==TRUE

TICK

dec(TransactionStopWhen);

dec(RetransmissionWhen);

dec(DelayedAckWhen);

Tick=FALSE;

Initialize

ONE_SECOND

FAILURE

Initialize=TRUE:

TransactionStatus = ONGOING;

MsgOutAvail=MsgInAvail=FALSE;

StartAckResponder=StartACKRequestor=FALSE;

(Opcode,MID,TID)=MsgIn.(OPCODE,MID,TID);

TransactionStopWhen=TransactionLifetime;

StartAckResponder=(MsgIn.ACK-REQ==1 ? TRUE : FALSE) && !IsBroadcast ;

Process(MsgIn);

IsBroadcast=IsBroadcastMsg(MsgIn);

INIT

MsgInAvail &&

MsgIn.TID== TID&&

DestMIHFID(ACK)==

SrcMIHFID(MsgIn)

TransactionStatus = SUCCESS

