IEEE P802.21d/D00-001, April 2013

IEEE P802.21d/D00-001, April 2013

P802.21d™/D00-001
Draft

 DOCVARIABLE "txtGorRPorSTD" * MERGEFORMAT Standard for Media Independent Handover Services Amendment: Multicast Group Management
<Amentment #/Corrigenda #>
Sponsor

IEEE SA Committee
of the
IEEE <Society Name> Society
Approved <XX MONTH 20XX>
IEEE-SA Standards Board
Copyright © 2012 by The Institute of Electrical and Electronics Engineers, Inc.

Three Park Avenue

New York, New York 10016-5997, USA

All rights reserved.

This document is an unapproved draft of a proposed IEEE Standard. As such, this document is subject to change. USE AT YOUR OWN RISK! Because this is an unapproved draft, this document must not be utilized for any conformance/compliance purposes. Permission is hereby granted for IEEE Standards Committee participants to reproduce this document for purposes of standardization consideration. Prior to adoption of this document, in whole or in part, by another standards development organization, permission must first be obtained from the IEEE Standards Association Department (stds.ipr@ieee.org). Other entities seeking permission to reproduce this document, in whole or in part, must also obtain permission from the IEEE Standards Association Department.

IEEE Standards Association Department

445 Hoes Lane

Piscataway, NJ 08854, USA
Abstract: <Select this text and type or paste Abstract—contents of the Scope may be used>

Keywords: <Select this text and type or paste keywords>

(
IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the soundness of any judgments contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied “AS IS.”

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation, or every ten years for stabilization. When a document is more than five years old and has not been reaffirmed, or more than ten years old and has not been stabilized, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon his or her independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE standard.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration. A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations Manual shall not be considered the official position of IEEE or any of its committees and shall not be considered to be, nor be relied upon as, a formal interpretation of the IEEE. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal position, explanation, or interpretation of the IEEE.
Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Recommendations to change the status of a stabilized standard should include a rationale as to why a revision or withdrawal is required. Comments and recommendations on standards, and requests for interpretations should be addressed to:
Secretary, IEEE-SA Standards Board

445 Hoes Lane

Piscataway, NJ 08854

USA
Authorization to photocopy portions of any individual standard for internal or personal use is granted by The Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.
Notice to users

Laws and regulations

Users of these documents should consult all applicable laws and regulations. Compliance with the provisions of this standard does not imply compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.
Copyrights

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making this document available for use and adoption by public authorities and private users, the IEEE does not waive any rights in copyright to this document.
Updating of IEEE documents

Users of IEEE standards should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the document together with any amendments, corrigenda, or errata then in effect. In order to determine whether a given document is the current edition and whether it has been amended through the issuance of amendments, corrigenda, or errata, visit the IEEE Standards Association web site at http://ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously.

For more information about the IEEE Standards Association or the IEEE standards development process, visit the IEEE-SA web site at http://standards.ieee.org.

Errata

Errata, if any, for this and all other standards can be accessed at the following URL:
http://standards.ieee.org/findstds/errata/index.html. Users are encouraged to check this URL for errata periodically.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to the existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant has filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the IEEE-SA website http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may indicate whether the Submitter is willing or unwilling to grant licenses under patent rights without compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair discrimination to applicants desiring to obtain such licenses.
Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained from the IEEE Standards Association.

Participants

At the time this draft

 DOCVARIABLE "txtGorRPorSTD" * MERGEFORMAT *Lowerstandard was submitted to the IEEE-SA Standards Board for approval, the Media Independent Handover Services Working Group had the following membership:

Yoshihiro Ohba, Chair
<Vice-chair Name>, Vice Chair
Participant1

Participant2

Participant3

Participant4

Participant5

Participant6

Participant7

Participant8

Participant9

The following members of the <individual/entity> balloting committee voted on this

 DOCVARIABLE "txtGorRPorSTD" *Lower * MERGEFORMAT standard. Balloters may have voted for approval, disapproval, or abstention.
(to be supplied by IEEE)

Balloter1

Balloter2

Balloter3

Balloter4

Balloter5

Balloter6

Balloter7

Balloter8

Balloter9

When the IEEE-SA Standards Board approved this

 DOCVARIABLE "txtGorRPorSTD" * MERGEFORMAT *Lowerstandard on <XX MONTH 20XX>, it had the following membership:

(to be supplied by IEEE)

<Name>, Chair
<Name>, Vice Chair

<Name>, Past Chair

<Name>, Secretary

SBMember1

SBMember2

SBMember3

SBMember4

SBMember5

SBMember6

SBMember7

SBMember8

SBMember9

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:
<Name>, DOE Representative
<Name>, NRC Representative
<Name>
IEEE Standards Program Manager, Document Development

<Name>
IEEE Standards Program Manager, Technical Program Development

Introduction

This introduction is not part of IEEE P802.21d/D00-001, Draft

 DOCVARIABLE "txtGorRPorSTD" * MERGEFORMAT Standard for Media Independent Handover Services Amendment: Multicast Group Management.

<Select this text and type or paste introduction text>

Contents
21. Overview

1.1 Scope
2
1.2 Purpose
2
2. Normative references
2
3. Definitions
2
4. Abbreviations and acronyms
3
5. General Architecture
4
5.1 Introduction
4
5.2 General design principles
4
5.3 MIHF service overview
4
5.4 Media independent handover reference framework
4
5.5 MIHF reference models for link-layer technologies
4
5.6 Service access points (SAPs)
4
5.7 MIH protocol
4
6. MIHF services
4
6.1 General
4
6.2 Service management
4
6.3 Media independent event service
4
6.4 Media independent command service
4
6.5 Media independent information service
6
7. Service access points (SAPs) and primitives
6
7.1 Introduction
6
7.2 SAPs
6
7.3 MIH_LINK_SAP primitives
6
7.4 MIH_SAP primitives
6
7.5 MIH_NET_SAP primitives
28
8. Media independent handover protocol
28
8.1 Introduction
28
8.2 MIH protocol description
28
8.3 MIH protocol identifiers
30
8.4 MIH protocol frame format
31
8.5 Message parameter TLV encoding
33
8.6 MIH protocol messages
33
9. MIH protocol protection
43
9.1 Protection established through MIH (D)TLS
43
9.2 Key establishment through an MIH service access authentication
43
9.3 MIH message protection mechanisms for EAP-generated SAs
43
9.4 Multicast MIH message protection mechanisms
44
9.5 Common procedures
52
10. Proactive authentication
52
Annex A (informative) Bibliography
53
Annex B (normative) Quality of service mapping
54
Annex C (informative) Handover procedures
55
Annex D (normative) Mapping MIH messages to reference points
56
Annex E (normative) Media specific mapping for SAPs
57
Annex F (normative) Data tyte definition
58
F.3 Derived data types
58
Annex G (normative) Information element identifiers
62
Annex H (normative) MIIS basic schema
63
Annex I (informative) Making user extensions to MIIS schema
64
Annex J (normative) IEEE 802.21 MIB
65
Annex K (informative) Example of MIH message fragmentation
66
Annex L (normative) MIH protocol message code assignments
67
Annex M (normative) Protocol implementation conformance statement (PICS) proforma
68
Annex N (informative) Authentication and key distribution procedures
69
Annex O (informative) Protection through transport protocols
70
Annex P (informative) GKB toy example
71

Draft

 DOCVARIABLE "txtGorRPorSTD" * MERGEFORMAT Standard for Media Independent Handover Services Amendment: Multicast Group Management
IMPORTANT NOTICE:
IEEE Standards documents are not intended to ensure safety, health, or environmental protection, or ensure against interference with or from other devices or networks. Implementers of IEEE Standards documents are responsible for determining and complying with all appropriate safety, security, environmental, health, and interference protection practices and all applicable laws and regulations.
This IEEE document is made available for use subject to important notices and legal disclaimers.
These notices and disclaimers appear in all publications containing this document and may
be found under the heading “Important Notice” or “Important Notices and Disclaimers
Concerning IEEE Documents.” They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/disclaimers.html.

NOTE—The editing instructions contained in this <amendment/corrigendum> define how to merge the material contained therein into the existing base standard and its amendments to form the comprehensive standard.

The editing instructions are shown in bold italic. Four editing instructions are used: change, delete, insert, and replace. Change is used to make corrections in existing text or tables. The editing instruction specifies the location of the change and describes what is being changed by using strikethrough (to remove old material) and underscore (to add new material). Delete removes existing material. Insert adds new material without disturbing the existing material. Insertions may require renumbering. If so, renumbering instructions are given in the editing instruction. Replace is used to make changes in figures or equations by removing the existing figure or equation and replacing it with a new one. Editing instructions, change markings, and this NOTE will not be carried over into future editions because the changes will be incorporated into the base standard.
1. Overview

1.1 Scope

1.2 Purpose

2. Normative references

The following referenced documents are indispensable for the application of this document (i.e., they must be understood and used, so each referenced document is cited in text and its relationship to this document is explained). For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments or corrigenda) applies.

3. Definitions

For the purposes of this document, the following terms and definitions apply. The IEEE Standards Dictionary Online should be consulted for terms not defined in this clause.

Insert the following definitions in alphabetically order:
Command Center (CC): A server which issues a group manipulation command and a group command. A CC resides in an MIH PoS.
Device key: A data assigned to an entity in order to de-capsulate a GKB.
Group command: A command issued to members which belongs to a group via a multicast channel.
Group key block (GKB): A data that entities who have corresponding device keys can only decapsulate it and obtain a group key. See also: Annex P.

Group Manager (GM): An out-of-band server which generates a GKB.
Group manipulation command: A command to make members join in a group, update a group or leave from the group.
Group media independent handover function identifier (Group MIHF ID): An MIHF ID to identify a group of MIHFs.
Individual media independent handover function identifier (Individual MIHF ID): An MIHF ID to identify a single MIHF.
Media independent handover function identifier (MIHF ID): An identifier to uniquely identify a single MIHF or a group of MIHFs.
4. Abbreviations and acronyms

Insert the following abbreviations and acronyms in alphabetically order:

CC
Command Center

GM
Group Manager

GKB
Group Key Block
5. General Architecture

5.1 Introduction

5.2 General design principles

5.3 MIHF service overview

5.4 Media independent handover reference framework

5.5 MIHF reference models for link-layer technologies

5.6 Service access points (SAPs)

5.7 MIH protocol

6. MIHF services

6.1 General

6.2 Service management

6.3 Media independent event service

6.4 Media independent command service

6.4.1 Command service flow model

Insert the following paragraph after the 1st paragraph:

When a command request frame is sent to a group of MIHFs, it is transported using multicast transport and one or more remote MIHF(s) may receive the request frame and the local MIHF may receive one or more command response frame(s) from the remote MIHF(s). In this case, a CC who is an MIH User on an MIH PoS is the issuer of a group command and the MIH PoS is the sender of the group command request frame, and MN(s) or other MIH PoS(es) are the recipient of the group command request frame. Some group command requests do not require responses to be returned.

6.4.2 Command list
6.4.2.1 MIH commands

6.4.2.1.1 General

Insert new rows after last row in Table 7 (MIH Commands):
Table 1 —MIH commands

	MIH command
	(L) ocal / (R) emote
	Comments
	Defined in

	MIH_Configuration_Update
	R
	This command is sent by PoS to a group of MNs or other PoSes to update their configuration.
	7.4.30

	MIH_MN_Group_Manipulate
	R

	This command is sent by an MN to a PoS to create, delete or update a group.
	7.4.31

	MIH_Net_Group_Manipulate
	R
	This command is sent by PoS to a group of MNs or other PoSes to create, delete or update a group.
	7.4.32

	MIH_Push_Certificate
	R
	This command is sent by PoS to a destination PoS or PoA
	7.4.33

	MIH_Revoke_Certificate
	R
	This commend is sent by PoS to a multicast group of PoS and/or PoA to revoke a certificate previously issued by the PoS.
	7.4.34

6.5 Media independent information service

7. Service access points (SAPs) and primitives

7.1 Introduction

7.2 SAPs

7.3 MIH_LINK_SAP primitives

7.4 MIH_SAP primitives

7.4.1 MIH_Capability_Discover

7.4.2 MIH_Register

7.4.2.1 MIH_Register.request
7.4.2.1.1 Semantics of service primitive

Change text as follows:

MIH_Register.request
(

DestinationIdentifier,

LinkIdentifierList,

MulticastLinkIdentifier,

RequestCode

)

Insert and modify the following parameters:

Parameters:

	Name
	Data type
	Description

	LinkIdentifierLista
	LIST(LINK_ID)
	(Optional) List of local link identifiers. This parameter shall be used if and only if DestinationIdentifier is an individual MIHF ID.

	MulticastLinkIdentifiera
	NET_TYPE_INC
	(Optional) Identifier of a group of links.

aThe primitive must contain the LinkIdentifierList parameter or MulticastLinkIdentifier parameter.
7.4.2.2 MIH_Register.indication

7.4.2.2.1 Semantics of service primitive

Change text as follows:

MIH_Register.indication
(

SourceIdentifier,

LinkIdentifierList,

MulticastLinkIdentifier,

RequestCode

)

Insert and modify the following parameters:

Parameters:

	Name
	Data type
	Description

	LinkIdentifierLista
	LIST(LINK_ID)
	(Optional) List of link identifiers of the remote MIHF. This parameter shall be used if and only if DestinationIdentifier is an individual MIHF ID.

	MulticastLinkIdentifiera
	NET_TYPE_INC
	(Optional) Identifier of a group of links.

aThe primitive must contain the LinkIdentifierList parameter or MulticastLinkIdentifier parameter.
7.4.2.3 MIH_Register.response

7.4.2.3.1 Semantics of service primitives

Change text as follows:

MIH_Register.response
(

DestinationIdentifier,

Status,

ValidTimeInterval,

MulticastCipherSuite,

Certificate

)

Add the following parameters:
	Name
	Data type
	Description

	MulticastCipherSuite
	MULTICAST_CAP
	(optional) Specifies the multicast ciphersuite to be used for securing multicast MIH message. Only one ciphersuite shall be included.

	Certificate
	CERTIFICATE
	(optional) X.509 certificate

7.4.2.4 MIH_Register.confirm

7.4.2.4.1 Semantics of service primitives

Change the text as follows:

MIH_Register.confirm
(

SourceIdentifier,

Status,

ValidTimeInterval,

MulticastCipherSuite,

Certificate

)

Add the following parameters:

	Name
	Data type
	Description

	MulticastCipherSuite
	MULTICAST_CAP
	(optional) Specifies the multicast ciphersuite to be used for securing multicast MIH message. Only one ciphersuite shall be included.

	Certificate
	CERTIFICATE
	(optional) X.509 certificate

7.4.3 MIH_DeRegister

7.4.4 MIH_Event_Subscribe

7.4.4.1 MIH_Event_Subscribe.request

7.4.4.1.1 Semantics of service primitive

Change the text as follows:
MIH_Event_Subscribe.request
(

DestinationIdentifier,

LinkIdentifier,

MulticastLinkIdentifier,

RequestedMihEventList,

EventConfigurationInfoList

)
Insert and modify the following parameters:

Parameters:

	Name
	Data type
	Description

	LinkIdentifiera
	LINK_TUPLE_ID
	(Optional) Identifier of the link for event subscription. For local event subscription, PoA link address need not be present if the link type lacks such a value. This parameter shall be used if and only if DestinationIdentifier is an individual MIHF ID.

	MulticastLinkIdentifiera
	NET_TYPE_INC
	(Optional) Identifier of a group of links for event subscription.

aThe primitive must contain the LinkIdentifier parameter or MulticastLinkIdentifier parameter.

7.4.5 MIH_Event_Unsubscribe

7.4.5.1 MIH_Event_Unsubscribe.request

7.4.5.1.1 Semantics of service primitive

Change the text as follows:

MIH_Event_Unsubscribe.request
(

DestinationIdentifier,

LinkIdentifier,

MulticastLinkIdentifier,

RequestedMihEventList

)
Insert and modify the following parameters:

Parameters:

	Name
	Data type
	Description

	LinkIdentifiera
	LINK_TUPLE_ID
	(Optional) Identifier of the link for event unsubscription. For local event unsubscription, PoA address in the Link Identifier need not be present if the link type lacks such a value. This parameter shall be used if and only if DestinationIdentifier is an individual MIHF ID.

	MulticastLinkIdentifiera
	NET_TYPE_INC
	(Optional) Identifier of a group of links for event unsubscription.

aThe primitive must contain the LinkIdentifier parameter or MulticastLinkIdentifier parameter.

7.4.6 MIH_Link_Detected.indication
7.4.7 MIH_Link_Up.indication

7.4.8 MIH_Link_Down.indication

7.4.9 MIH_Link_Parameters_Report.indication

7.4.10 MIH_Link_Going_Down.indication

7.4.11 MIH_Link_Handover_Imminent.indication

7.4.12 MIH_Link_Handover_Complete.indication

7.4.13 MIH_Link_PDU_Transmit_Status.indication

7.4.14 MIH_Link_Get_Parameters

7.4.14.1 MIH_Link_Get_Parameters.request

7.4.14.1.1 Semantics of service primitive

Change the text as follows:

MIH_Link_Get_Parameters.request
(

DestinationIdentifier,

DeviceStatesRequest,

LinkIdentifierList,

MulticastLinkIdentifier,

GetStatusRequestSet

)
Insert and modify the following parameters:

Parameters:

	Name
	Data type
	Description

	LinkIdentifierLista
	LIST(LINK_ID)
	(Optional) List of link identifiers for which status is requested. If the list is empty, return the status of all available links. This parameter shall be used if and only if DestinationIdentifier is an individual MIHF ID.

	MulticastLinkIdentifiera
	NET_TYPE_INC
	(Optional) Identifier of a group of links for which status is requested.

aThe primitive must contain the LinkIdentifierList parameter or MulticastLinkIdentifier parameter.

7.4.15 MIH_Link_Configure_Thresholds

7.4.15.1 MIH_Link_Configure_Thresholds.request

7.4.15.1.1 Semantics of service primitive

Change the text as follows:

MIH_Link_Configure_Thresholds.request
(

DestinationIdentifier,

LinkIdentifier,

MulticastLinkIdentifier,

ConfigureRequestList

)
Insert and modify the following parameters:

Parameters:

	Name
	Data type
	Description

	LinkIdentifiera
	LINK_TUPLE_ID
	(Optional) Identifier of the link to be configured. This parameter shall be used if and only if DestinationIdentifier is an individual MIHF ID.

	MulticastLinkIdentifiera
	NET_TYPE_INC
	(Optional) Identifier of a group of links to be configured

aThe primitive must contain the LinkIdentifier parameter or MulticastLinkIdentifier parameter.

7.4.16 MIH_Link_Actions

7.4.16.1 MIH_Link_Actions.request

7.4.16.1.1 Semantics of service primitive

Change the text as follows:

MIH_Link_Actions.request
(

DestinationIdentifier,

LinkActionsList,

MulticastLinkActionsList

)
Insert and modify the following parameters:

Parameters:
	Name
	Data type
	Description

	LinkActionsLista
	LIST(LINK_ACTION_REQ)
	(Optional) Specifies the suggested actions. This parameter shall be used if and only if DestinationIdentifier is an individual MIHF ID.

	MulticastLinkActionsLista
	LIST(MULTICAST_ACTION_REQ)
	(Optional) Specifies the suggested actions for a group of links.

aThe primitive must contain the LinkActionsList parameter or MulticastLinkActionsList parameter.
7.4.17 MIH_Net_HO_Candidate_Query

7.4.18 MIH_MN_HO_Candidate_Query

7.4.19 MIH_N2N_HO_Query_Resources

7.4.20 MIH_MN_HO_Commit

7.4.21 MIH_Net_HO_Commit

7.4.21.1 MIH_Net_HO_Commit.request

7.4.21.1.1 Semantics of service primitive

Change the text as follows:

MIH_Net_HO_Commit.request
(

DestinationIdentifier,

LinkType,

TargetNetworkInfoList,

AssignedResourceSet,

LinkActionExecutionDelay,

LinkActionsList,

MulticastLinkActionList

)

Insert and modify the following parameters:
	Name
	Data type
	Description

	LinkActionExecutionDelay
	UNSIGNED_INT(2)
	(Optional) Time (in ms) to elapse before an action needs to be taken. A value of 0 indicates that the action is taken immediately. Time elapsed is calculated from the instance the command arrives until the time when the execution of the action is carried out. This parameter shall be used for non-group operation.

	LinkActionsLista
	LIST(LINK_ACTION_REQ)
	(Optional) Specifies the suggested actions. This parameter shall be used if and only if DestinationIdentifier is an individual MIHF ID.

	MulticastLinkActionsLista
	LIST(MULTICAST_ACTION_REQ)
	(Optional) Specifies the suggested actions for a group of links.

aThe primitive must contain the LinkActionsList parameter or MulticastLinkActionsList parameter.

7.4.21.2 MIH_Net_HO_Commit.indication

7.4.21.2.1 Semantics of service primitive

Change the text as follows:

MIH_Net_HO_Commit.indication
(

SourceIdentifier,

LinkType,

TargetNetworkInfoList,

AssignedResourceSet,

LinkActionExecutionDelay,

LinkActionsList,

MulticastLinkActionList

)

Insert and modify the following parameters:
	Name
	Data type
	Description

	LinkActionExecutionDelay
	UNSIGNED_INT(2)
	(Optional) Time (in ms) to elapse before an action needs to be taken. A value of 0 indicates that the action is taken immediately. Time elapsed is calculated from the instance the command arrives until the time when the execution of the action is carried out. This parameter shall be used for non-group operation.

	LinkActionsLista
	LIST(LINK_ACTION_REQ)
	(Optional) Specifies the suggested actions. This parameter shall be used if and only if DestinationIdentifier is an individual MIHF ID.

	MulticastLinkActionsLista
	LIST(MULTICAST_ACTION_REQ)
	(Optional) Specifies the suggested actions for a group of links.

aThe primitive must contain the LinkActionsList parameter or MulticastLinkActionsList parameter.

7.4.22 MIH_N2N_HO_Commit

7.4.23 MIH_MN_HO_Complete

7.4.24 MIH_N2N_HO_Complete

7.4.25 MIH_Get_Information

7.4.26 MIH_Push_Information

7.4.27 MIH_Push_key
7.4.28 MIH_LL_Auth

7.4.29 MIH_Net_HO_Bcast_Commit

Add the following primitives at the end of Section 7.4:

7.4.30 MIH_Configuration_Update

7.4.30.1 MIH_Configuration_Update.request

7.4.30.1.1 Function

This primitive is generated by a PoS to update the configuration of one or more MN(s) or other PoS(es).

7.4.30.1.2 Semantics of service primitive

MIH_Configuration_Update.request
(

DestinationIdentifier,

ConfigurationData
)
Parameters:
	Name
	Data type
	Description

	DestinationIdentifier
	MIHF_ID
	Specifies MIHF-ID of the remote MIHF(s) to be configured.

	ConfigurationData
	OCTET_STRING
	Configuration data.

7.4.30.1.3 When generated

The MIH user generates this primitive to update the configuration of one or more MN(s) and/or other PoS(es).

7.4.30.1.4 Effect on receipt

Upon receipt of this primitive, MIHF on the PoS sends the corresponding MIH_Configuration_Update indication message to the MN(s) or other PoS(es).

7.4.30.2 MIH_Configuration_Update.indication

7.4.30.2.1 Function

This primitive is generated by an MIHF to update the configuration of one or more MN(s) or other PoS(es).

7.4.30.2.2 Semantics of service primitive

MIH_Configuration_Update.indication
(

SourceIdentifier,

GroupIdentifier,

ConfigurationData

)
Parameters:
	Name
	Data type
	Description

	SourceIdentifier
	MIHF_ID
	Specifies MIHF-ID of the remote MIHF that sent MIH_Configuration_Update indication message.

	GroupIdentifier
	MIHF_ID
	Specifies the target group identifier.

	ConfigurationData
	OCTET_STRING
	Configuration data.

7.4.30.2.3 When generated

This primitive is generated by an MIHF on a MN or a PoS when receiving an MIH_Configuration_Update indication message from a remote MIHF.

7.4.30.2.4 Effect on receipt

Upon receipt of this primitive, an MIH user on a MN or a PoS may modify its configuration using the ConfigurationData parameter.
7.4.31 MIH_MN_Group_Manipulate

7.4.31.1 MIH_MN_Group_Manipulate.request

7.4.31.1.1 Function

This primitive is generated by an MN to manipulate its own group membership.

7.4.31.1.2 Semantics of service primitive

MIH_MN_Group_Manipulate.request
(

DestinationIdentifier,

GroupIdentifier,
GroupAction,
)

Parameters:
	Name
	Data Type
	Description

	DestinationIdentifier
	MIHF_ID
	Specifies group MIHF-ID of the remote MIHFs. DestinationIdentifier may be different from GroupIdentifier.

	GroupIdentifier
	MIHF_ID,

	The target group identifier for the group operation.

	GroupAction
	GROUP_MGT_ACTION
	The action to be taken: Join/Leave the group.

7.4.31.1.3 When generated

The MIH user generates this primitive to request joining or leaving a group.
7.4.31.1.4 Effect on receipt

Upon receipt of this primitive, MIHF on the MN sends the corresponding MIH_MN_Group_Manipulate request message to the PoS.

7.4.31.2 MIH_MN_Group_Manipulate.indication

7.4.31.2.1 Function

This primitive is used by an MIHF to notify an MIH User that a MIH_MN_Group_Manipulate request message has been received.

7.4.31.2.2 Semantics of service primitive

MIH_MN_Group_Manipulate.indication
(

SourceIdentifier,

GroupIdentifier,

GroupAction
)
Parameters:

	Name
	Data Type
	Description

	SourceIdentifier
	MIHF_ID
	Specifies MIHF-ID of the remote MIHF that issued MIH_MN_Group_Manipulate.request.

	GroupIdentifier
	MIHF_ID,

	The target group identifier for the group operation.

	GroupAction
	GROUP_MGT_ACTION
	The action to be taken: Join/Leave the group.

7.4.31.2.3 When generated

This primitive is generated by an MIHF on a PoS when receiving an MIH_MN_Group_Manipulate request message from a remote MIHF.

7.4.31.2.4 Effect on receipt

Upon receipt of this primitive, an MIH user on a PoS may take the required actions in order to perform the action specified in GroupAction.

7.4.31.3 MIH_MN_Group_Manipulate.response

7.4.31.3.1 Function

This primitive is generated by an MIH User to acknowledge result of an MIH_MN_Group_Manipulate request from an MN.
7.4.31.3.2 Semantics of service primitive

MIH_MN_Group_Manipulate.response
(

DestinationIdentifier,

GroupIdentifier,

MulticastAddress,
SubgroupRange,

VerifyGroupKey,

AuxData,

CompleteSubtree,

GroupKeyData
GroupStatus

)

Parameters:
	Name
	Data Type
	Description

	DestinationIdentifier
	MIHF_ID
	Specifies the MIHF ID of the destination of the primitive

	GroupIdentifier
	MIHF_ID,

	The target group identifier for the group operation.

	MulticastAddress
	TRANSPORT_ADDR
	(optional) Multicast address corresponding with the target group identifier.

	SubgroupRange
	SUBGROUP_RANGE
	(optional) Subgroup to process the command

	VerifyGroupKey
	OCTET_STRING
	(optional) Verification data for group key.

	AuxData
	OCTET_STRING
	(optional) Auxiliary data.

	CompleteSubtree
	OCTET_STRING
	(Optional) Complete Subtree data.

	GroupKeyData
	ENCR_BLOCK
	(Optional)Encrypted group key.

	GroupStatus
	GROUP_STATUS
	Status of the group operation

7.4.31.3.3 When generated

An MIH User at the PoS generates this primitive after receipt and processing of MIH_MN_Group_Manipulate request. This primitive returns the status of the action asked in the request. Optionally, it may respond with the security mechanisms required by the group.
7.4.31.3.4 Effect on receipt

MIH_MN_Group_Manipulate response message is sent back to the group manipulate requester.

7.4.31.4 MIH_MN_Group_Manipulate.confirm

7.4.31.4.1 Function

This primitive is generated by an MIHF that receives an MIH_MN_Group_Manipulate response to indicate the status of the group manipulation.

7.4.31.4.2 Semantics of service primitive

MIH_MN_Group_Manipulate.confirm
(

SourceIdentifier,
GroupIdentifier,

GroupStatus

)
Parameters:

	Name
	Data Type
	Description

	SourceIdentifier
	MIHF_ID
	Specifies the MIHF ID of the remote MIHF

	GroupIdentifier
	MIHF_ID

	The target group identifier for the group operation.

	GroupStatus
	GROUP_STATUS
	Status of the group operation

7.4.31.4.3 When generated

This primitive is sent to the MIH User after the MIHF receives an MIH_MN_Group_Manipulate response message.

7.4.31.4.4 Effect on receipt

The status of the group operation is noted.
7.4.32 MIH_Net_Group_Manipulate

7.4.32.1 MIH_Net_Group_Manipulate.request

7.4.32.1.1 Function

This primitive is generated by the MIH User of a PoS to manipulate group membership of one or more MN(s) or other PoS(es).

7.4.32.1.2 Semantics of service primitive

MIH_Net_Group_Manipulate.request
(

DestinationIdentifier,

ResponseFlag,

GroupKeyUpdateFlag, “Is this necessary?”
GroupIdentifier,

MulticastAddress,

SubgroupRange,

VerifyGroupKey, “Is this necessary?”
AuxData,

CompleteSubtree,

GroupKeyData
)

Parameters:
	Name
	Data Type
	Description

	DestinationIdentifier
	MIHF_ID
	Specifies group MIHF-ID of the remote MIHFs. DestinationIdentifier may be different from GroupIdentifier.

	ResponseFlag
	RESPONSE_FLAG
	Flag which represents whether response is needed or not

	GroupKeyUpdateFlag
	GROUP_KEY_UPDATE_FLAG
	Flag which represents whether a group key in GroupKeyData is updated or not.

	GroupIdentifier
	MIHF_ID,

	The target group identifier for the group operation.

	MulticastAddress
	TRANSPORT_ADDR
	(optional) Multicast address corresponding with the target group identifier.

	SubgroupRange
	SUBGROUP_RANGE
	(optional) Subgroup to process the command

	VerifyGroupKey
	OCTET_STRING
	(optional) Verification data for group key.

	AuxData
	OCTET_STRING
	(optional) Auxiliary data.

	CompleteSubtree
	OCTET_STRING
	Complete Subtree data.

	GroupKeyData
	ENCR_BLOCK
	Encrypted group key.

7.4.32.1.3 When generated

The MIH user generates this primitive to create, delete or modify a group.

7.4.32.1.4 Effect on receipt

Upon receipt of this primitive, the MIHF on the PoS sends the corresponding MIH_Net_Group_Manipulate indication message or MIH_Net_Group_Manipulate request message to the MN(s) or other PoS(es). The ResponseFlag TLV indicates which message shall be sent.

7.4.32.2 MIH_Net_Group_Manipulate.indication

7.4.32.2.1 Function

This primitive is used by an MIHF to notify an MIH User that a MIH_Net_Group_Manipulate indication message or an MIH_Net_Group_Manipulate request message has been received.

7.4.32.2.2 Semantics of service primitive

MIH_Net_Group_Manipulate.indication
(

SourceIdentifier,

ResponseFlag,

GroupIdentifier,

AuxData,

GroupStatus
)
Parameters:

	Name
	Data Type
	Description

	SourceIdentifier
	MIHF_ID
	Specifies MIHF-ID of the remote MIHF that issued MIH_Net_Group_Manipulate.request.

	ResponseFlag
	RESPONSE_FLAG
	Flag which represents whether response is needed or not

	GroupIdentifier
	MIHF_ID

	The target group identifier for the group operation.

	MulticastAddress
	TRANSPORT_ADDR
	(optional) Multicast address corresponding with the target group

	AuxData

	OCTET_STRING
	(optional) Auxiliary data.

	GroupStatus
	GROUP_STATUS
	Status of the group.

7.4.32.2.3 When generated

This primitive is generated by an MIHF on a MN or a PoS when receiving an MIH_Net_Group_Manipulate indication message or an MIH_Net_Group_Manipulate request message from a remote MIHF.

7.4.32.2.4 Effect on receipt

Upon receipt of this primitive, an MIH user on a MN or a PoS may join or leave a group specified in GroupIdentifier parameter. When the MIH User may also decrypt and install an encrypted group key that is associated with the specific group and contained in the GroupKeyData. The detailed procedure is described in Section 0.

7.4.32.3 MIH_Net_Group_Manipulate.response

7.4.32.3.1 Function

This primitive is generated by an MIH User to acknowledge result of an MIH_Net_Group_Manipulate request from a PoS.

7.4.32.3.2 Semantics of service primitive

MIH_Net_Group_Manipulate.response
(

DestinationIdentifier,

GroupIdentifier,

GroupStatus

)
Parameters:

	Name
	Data Type
	Description

	DestinationIdentifier
	MIHF_ID
	Specifies the requestor of the group manipulation.

	GroupIdentifier
	MIHF_ID
	The target group identifier for the group operation.

	GroupStatus
	GROUP_STATUS
	Status of the group

7.4.32.3.3 When generated

An MIH User generates this primitive after receipt and processing of MIH_Net_Group_Manipulate request.

7.4.32.3.4 Effect on receipt

MIH_Net_Group_Manipulate response message is sent back to the group manipulate requester.

7.4.32.4 MIH_Net_Group_Manipulate.confirm

7.4.32.4.1 Function

This primitive is generated by a MIHF that receives an MIH_Net_Group_Manipulate response to indicate the status of the group manipulation.

7.4.32.4.2 Semantics of service primitive

MIH_Net_Group_Manipulate.confirm
(

SourceIdentifier,
GroupIdentifier,
GroupStatus

)
Parameters:

	Name
	Data Type
	Description

	SourceIdentifier
	MIHF_ID
	Specifies the responder of the group manipulation.

	GroupIdentifier
	MIHF_ID
	The target group identifier for the group operation.

	GroupStatus
	GROUP_STATUS
	Status of the group

7.4.32.4.3 When generated

An MIH User generates this primitive after receipt and processing of MIH_Net_Group_Manipulate request.

7.4.32.4.4 Effect on receipt

MIH_Net_Group_Manipulate response message is sent back to the group manipulate requester.

7.4.33 MIH_Push_Certificate

7.4.33.1 MIH_Push_Certificate.request

7.4.33.1.1 Function

This primitive is generated by a PoS used to send a certificate from a PoS to a destination PoS or MN.

7.4.33.1.2 Semantics of service primitive

MIH_Push_Certificate.request
(

DestinationIdentifier,

Certificate

)

Parameters:
	Name
	Data Type
	Description

	DestinationIdentifier
	MIHF_ID
	Specifies the recipient of the certificate.

	Certificate
	CERTIFICATE
	X.509 certificate

7.4.33.1.3 When generated

A PoS generates this primitive for initial provisioning of certificates or for certificate updates.

7.4.33.1.4 Effect on receipt

Upon receipt of this primitive, the MIHF on the PoS sends the corresponding MIH_Push_Certificate request message to the destination MN or PoS.

7.4.33.2 MIH_Push_Certificate.indication

7.4.33.2.1 Function

This primitive is generated by a MIHF that receives an MIH_Push_Certificate request message to manipulate group membership of one or more MN(s) or other PoS(es).

7.4.33.2.2 Semantics of service primitive

MIH_Push_Certificate.indication
(

SourceIdentifier,

Certificate
)
Parameters:
	Name
	Data Type
	Description

	SourceIdentifier
	MIHF_ID
	Identifies the sender of the certificate.

	Certificate
	CERTIFICATE
	X.509 certificate

7.4.33.2.3 When generated

This primitive is generated by an MIHF when an MIH_Push_Certificate request message is received.

7.4.33.2.4 Effect on receipt

Certificate signature is verified and result of verification is provided back to push requester. After verification, validated certificate public keys within their expiration period can be utilized for multicast message.

7.4.33.3 MIH_Push_Certificate.response

7.4.33.3.1 Function

This primitive is generated by an MIH User to acknowledge receipt of a certificate from a PoS.

7.4.33.3.2 Semantics of service primitive

MIH_Push_Certificate.response
(

DestinationIdentifier,

CertificateSerialNumber,

CertificateStatus

)
Parameters:

	Name
	Data Type
	Description

	DestinationIdentifier
	MIHF_ID
	Specifies the requestor of the certificate revocation.

	CertificateSerialNumber
	CERTIFICATE_SERIAL_NUMBER
	X.509 certificate subfield – serial number

	CertificateStatus
	CERT_STATUS
	Indicates whether a certificate has been verified and is now in use by the recipient.

7.4.33.3.3 When generated

An MIH User generates this primitive after receipt and processing of certificate.

7.4.33.3.4 Effect on receipt

If certificate signature is valid, then MIH_Push_Certificate response message is sent back to the push requester. Result of request is provided in the REVOCATION_STATUS.

7.4.33.4 MIH_Push_Certificate.confirm

7.4.33.4.1 Function

This primitive is generated by a MIHF that receives an MIH_Push_Certificate response to indicate the status of the certificate inspection.

7.4.33.4.2 Semantics of service primitive

MIH_Push_Certificate.confirm
(

SourceIdentifier,

CertificateSerialNumber,

CertificateStatus
)
Parameters:

	Name
	Data Type
	Description

	SourceIdentifier
	MIHF_ID
	Identifies the remote MIHF that invoked MIH_Revoke_Certificate.response.

	CertificateSerialNumber
	CERT_SERIAL_NUMBER
	X.509 certificate subfield – serial number

	CertificateStatus
	CERT_STATUS
	Indicates whether a certificate has been verified and is now in use by the recipient.

7.4.33.4.3 When generated

The MIHF that receives an MIH_Push_Certificate response message generates this primitive to indicate the status of the certificate inspection.

7.4.33.4.4 Effect on receipt

If Certificate Status indicates success indicates that the PoS can manage device as being capable of received signed multicast messages.

7.4.34 MIH_Revoke_Certificate

7.4.34.1 MIH_Revoke_Certificate.request

7.4.34.1.1 Function

This primitive is generated by a PoS used to revoke a certificate.

7.4.34.1.2 Semantics of service primitive

MIH_Revoke_Certificate.request (

DestinationIdentifier,

CertificateSerialNumber
)
Parameters:

	Name
	Data Type
	Description

	DestinationIdentifier
	MIHF_ID
	Specifies an MIHF or a group of MIHFs to revoke the certificate.

	CertificateSerialNumber
	CERT_SERIAL_NUMBER
	X.509 certificate subfield – serial number

	CertificateRevocation
	SIGNATURE
	Digital signature for a revoked X.509 certificate serial number generated by CA.

7.4.34.1.3 When generated

The MIH user generates this primitive to revoke a certificate.

7.4.34.1.4 Effect on receipt

Upon receipt of this primitive, MIHF on the PoS sends the corresponding MIH_Revoke_Certificate request message to the destination MIHF(s).

7.4.34.2 MIH_Revoke_Certificate.indication

7.4.34.2.1 Function

This primitive is generated by an MIHF to revoke a certificate stored in MN(s) and PoS(es).

7.4.34.2.2 Semantics of service primitive

MIH_Revoke_Certificate.indication
(

SourceIdentifier,

CertificateSerialNumber
)
Parameters:

	Name
	Data Type
	Description

	SourceIdentifier
	MIHF_ID
	Specifies the remote MIHF that invoked MIH_Revoke_Certificate.request primitive.

	CertificateSerialNumber
	CERT_SERIAL_NUMBER
	X.509 certificate subfield – serial number

	CertificateRevocation
	SIGNATURE
	Digital signature for a revoked X.509 certificate serial number generated by CA.

7.4.34.2.3 When generated

This primitive is generated by an MIHF on a MN or a PoS when receiving an MIH_Revoke_Certificate request message from a remote MIHF.

7.4.34.2.4 Effect on receipt

Upon receipt of this primitive, an MIH user on a MN or a PoS verifies Certificate Revocation signature, and if it is valid, then it deprecate the certificate specified by the CertificateSerialNumber and invokes a MIH_Revoke_Certificate.confirm primitive.

7.4.34.3 MIH_Revoke_Certificate.response

7.4.34.3.1 Function

This primitive is generated by an MIH User to acknowledge receipt of a certificate revocation request from a PoS.

7.4.34.3.2 Semantics of service primitive

MIH_Revoke_Certificate.response

(

DestinationIdentifier,

CertificateStatus
)
Parameters:

	Name
	Data Type
	Description

	SourceIdentifier
	MIHF_ID
	Specifies the remote MIHF that invoked MIH_Revoke_Certificate.request primitive.

	Certificate Status
	CERT_STATUS
	Indicates whether a certificate has been revoked.

7.4.34.3.3 When generated

This primitive is generated by an MIHF on a MN or a PoS when receiving an MIH_Revoke_Certificate request message from a remote MIHF.

7.4.34.3.4 Effect on receipt

Upon receipt of this primitive, an MIH user on a MN or a PoS deprecate the certificate specified by the CertificateSerialNumber and invokes a MIH_Revoke_Certificate.confirm primitive.

7.4.34.4 MIH_Revoke_Certificate.confirm

7.4.34.4.1 Function

This primitive is generated by a MIHF that receives an MIH_Revoke_Certificate response to indicate the status of the certificate revocation.

7.4.34.4.2 Semantics of service primitive

MIH_Revoke_Certificate.confirm (

SourceIdentifier,

CertificateStatus
)
Parameters:

	Name
	Data Type
	Description

	SourceIdentifier
	MIHF_ID
	Identifies the remote MIHF that invoked MIH_Revoke_Certificate.response.

	Certificate Status
	CERT_STATUS
	Indicates whether a certificate has been revoked.

7.4.34.4.3 When generated

The MIHF that receives an MIH_Revoke_Certificate response message generates this primitive to indicate the status of the certificate revocation.

7.4.34.4.4 Effect on receipt

If Certificate Status indicates success for all the MIHFs to which certificate revocation request was sent, the PoS can changes status of the certificate to have been revoked.

7.5 MIH_NET_SAP primitives

8. Media independent handover protocol

8.1 Introduction

8.2 MIH protocol description

8.2.1 MIH protocol transaction state diagram

8.2.1.1 Inter-state-machine procedures

Change item c) of IEEE 802.21 as ament by IEEE 802.21b, as follows:
c) BOOLEAN IsMulticastMsg(MIH_MESSAGE)—This procedure outputs TRUE if the input message has a broadcast or multicast zero length destination MIHF_ID. Otherwise, it outputs FALSE.
8.2.1.2 Transaction source and destination state machines
8.2.1.2.1 Intra-state-machine variables

Change item a) and add item b) as follows:
d) IsMulticast—This variable’s type is BOOLEAN. When its value is TRUE, it indicates that a message has a zero length broadcast or multicast destination MIHF_ID. Otherwise, its value is FALSE.
e) ResponseSent – This variable’s type is BOOLEAN. When its value is TRUE, it indicates that a Response message has been sent. Otherwise, its value is FALSE.
8.2.1.2.2 Transaction destination state machine

modify Figure 25 as follows:
[image: image1.emf]INIT

TransactionStatus = ONGOING;

(Opcode,MID,TID)=MsgIn.(OPCODE,MID,TID);

TransactionStopWhen=TransactionLifetime;

IsMulticast=IsMulticast(MsgIn);

PeerMihfID=SrcMIHF_ID(MsgIn);

MyMihfID=DstMIHF_ID(MsgIn);

StartAckResponder=(MsgIn.ACK-Req == 1 ? TRUE : FALSE) &&

!IsMulticast;

MsgOutAvail=Process(MsgIn);

MsgInAvail=FALSE;

ResponseSent=FALSE;

WAIT_RESPONSE_PRMFAILURE

TransactionStatus=FAILURE;

SEND_RESPONSE

StartAckRequestor=(MsgOut.ACK-Req == 1 ? TRUE : FALSE);

AckRequestorStatus=ONGOING;

Transmit(MsgOut);

ResponseSent=TRUE;

SUCCESS

TransactionStatus=SUCCESS;

MsgInAvail

Opcode == Indication ||

Opcode == Response

Opcode == Request

IsMulticast

MsgOutAvail &&

(!StartAckResponder ||

MsgOut_ACK-Rsp == 1)

ResponseSent &&

TransactionStopWhen == 0

!StartAckRequestor || AckRequestorStatus == SUCCESS

!ResponseSent &&

TransactionStopWhen == 0

AckRequestorStatus == FAILURE

Figure 28 —Transaction destination state machine

8.2.2 Other considerations
8.2.2.1 MIHF discovery

8.2.2.1.1 Solicited MIH capability discovery

Change first paragraph in 8.2.4.3.4 as follows:

An MIHF (the requestor) discovers its peer MIH functions and capabilities by sending an MIH_Capability_Discover request message to either its multicast domain with zero length broadcast, multicast MIHF ID or a known MIHF ID, respectively. Only MIH network entities respond to a multicast MIH_Capability_Discover request.

Change last paragraph of 8.2.4.3.4 as follows:

If the MIH capability discovery is invoked upon receiving MIH capability advertisement in unauthenticated state through media specific broadcast messages, such as beacon frames and DCD, destination MIHF ID is filled with a zero length the broadcast MIHF ID and this message is transmitted over the control plane using an L2 management frame, such as an IEEE 802.11 management action frame or an IEEE 802.16 MAC management message. This message contains the SupportedMihEventList, SupportedMihCommandList, SupportedISQueryTypeList, SupportedTransportList, and MBBHandoverSupport TLVs to enable the receiving MIHF to discover the sending MIHF’s capability. Therefore, peer MIHF entities can discover each other’s MIH capability by one MIH protocol message transaction. When the requestor receives the unicast MIH_Capability_Discover response message, which is embedded in the media specific control message, it retrieves the responder.'s MIHF ID by checking the source of the MIH_Capability_Discover response message.
8.3 MIH protocol identifiers

8.3.1 MIHF ID

Change subclause 8.3.1 as ament by IEEE 802.21b as follows:
MIHF Identifier (MIHF ID) is an identifier that is required to uniquely identify an MIHF entity a specific MIHF or a group of MIHFs for delivering the MIH services. MIHF ID is used in all MIH protocol messages. This enables the MIH protocol to be transport agnostic.

MIHF ID is assigned to the MIHF during its configuration process. The configuration process is outside the scope of the standard.

Broadcast MIHF ID is defined as an MIHF ID of zero length. A zero length broadcast (zero length) MIHF ID may be used in an MIH message when destination MIHF ID is not known to a source MIHF. Multicast MIHF ID is used when a message is addressed to a group of MIHFs. The following MIH messages can use a zero length broadcast MIHF ID:

f) MIH Messages for Management Service:

1) MIH_Capability_Discover request
g) MIH Messages for Command Service:

1) MIH_Link_Get_Parameters request

2) MIH_Link_Configure_Thresholds request

3) MIH_Net_HO_Bcst_Commit indication

h) MIH Messages for Information Service:

1) MIH_Push_Information indication

In addition the following rules apply to the case of messages addressed to a multicast MIHF ID:

· Multicast transmission is not allowed for Events.

· Multicast transmission in general is not allowed for messages sent by the MN. Hence, commands in the form of MIH_MN_* cannot use multicast transmission.

· Multicast transmission is not allowed for MIH_NET_SAP primitives.

· Multicast transmission is not allowed for MIH_LINK_SAP primitives.

 In particular, the following MIH messages can use a multicast MIHF ID. In the next list, when a message can be sent by a PoS and an MN, the only allowed multicast transmission is when the message is sent by the PoS:

i) MIH Messages for Management Service:
1) MIH_Registration request
2) MIH_DeRegister request
j) MIH Messages for Command Service:
1) MIH_Link_Get_Parameters request
2) MIH_Link_Configure_Thresholds request
3) MIH_Link_Actions request
4) MIH_Net_HO_Candidate_Query request
5) MIH_N2N_HO_Query_Resources request
6) MIH_Net_HO_Commit request
7) MIH_Configuration_Update indication
8) MIH_Net_Group_Manipulate indication
9) MIH_Push_Certificate request
10) MIH_Revoke_Certificate request
11) MIH_Event_Subscribe request
12) MIH_Event_UnSubscribe request
k) MIH Messages for Information Service:

1) MIH_Get_Information request
2) MIH_Push_Information indication

The MIHF ID is of type MIHF_ID. (See F.3.11.)

8.4 MIH protocol frame format

Change numbering of subclause 8.4.1a to 8.4.2

8.4.1 Protected MIH protocol frame format

Change second paragraph of section 8.4.2 as follows:

A protected MIH PDU is an MIH PDU that has an MIH header with S bit set to one indicating that the MIH service specific TLVs in this PDU are protected encrypted or the PDU is digitally signed. When the MIH service specific TLVs in this PDU are encrypted, Each each security association is defined for a pair of MIHF identifiers and is identified by a security association identifier (SAID). Therefore, for a protected MIH PDU, when a security association identifier is defined and the PDU is not digitally signed, the Source and Destination MIHF identifier TLVs may not be present. In this case, an MIH header is followed by an SAID TLV, which is followed by a security TLV. When no SAID TLV is carried, Service Specific TLVs shall be carried without encryption and therefore no Security TLV is carried. A Signature TLV is carried when a multicast PDU is digitally signed. When an MIH message with the S bit set is multicast, Source and Destination Identifier TLVs and an SAID TLV shall be carried and the ID_VALUE of the SAID TLV contains a NULL string.
Change numbering of Figure 29a to Figure 29 and modify as follows:

[image: image2.emf]MIH header

(S=1)

Source MIHF

Identifier TLV

Destination MIHF

Identifier TLV

SAID TLV

Security TLV or Service

Specific TLVs

Signature TLV

Figure 29 — Protected MIH frame format

NOTE—Modify accordingly the reference number of Figures 28x accordingly:

8.4.1.1 MIH PDU protected by (D)TLS

Add the following text at the end of subclause 8.4.2.1:

A Signature TLV shall not be carried when MIH PDU is protected by (D)TLS.
8.4.1.2 MIH PDU protected through EAP-generated MIH SA

Add the following text at the end of subclause 8.4.2.3:

A Signature TLV shall not be carried when MIH PDU is protected through EAP-generated MIH SA.

Add the following section:

8.4.1.3 MIH PDU protected through GKB-generated MIH SA (Check this)
A group MIH security association (SA) may be established through GKB. A group MIH SA is established among a group of MIHFs. It includes a ciphersuite used for the protection. A security association identifier is assigned by the PoS as a result of successful GKB procedure. Figure 34a shows a protected MIH PDU for GKB-generated MIH SA with a Signature TLV. The protection procedure is specified in 9.4.1.
Insert the following figure at the end of subclause 8.4.2.4:
[image: image3.emf]MIH Service Specific TLVs

Protection through MKB-generated SA

MIH header

(S=1)

Source MIHF

Identifier TLV

Destination MIHF

Identifier TLV

SAID TLV

(ID_TYPE=2)

Security TLVSignature TLV

Figure 30 —MIH PDU protected by a GKB-generated MIH SA with a signature TLV
Modify subclause numbering:
8.4.1.4 Protected MIH PDU upon transport address change
8.5 Message parameter TLV encoding

8.6 MIH protocol messages

8.6.1 MIH messages for service management

8. MIH_Capability_Discover request

Change 8.6.1.1 as follows:

If a requesting MIHF entity does not know the destination MIHF entity’s MIHF ID, the requesting MIHF entity may fill its destination MIHF ID with a zero length broadcast MIHF ID to send this capability discover message.
8. MIH_Capability_Discover response

Change 8.6.1.2 as follows:

The corresponding MIH primitive of this message is defined in 7.4.1.3. This message is sent in response to an MIH_Capability_Discover request message that was destined to a single MIHF_ID or a zero length broadcast MIHF ID.
8. MIH_Register request

Change 8.6.1.3 as follows:
This message is transmitted to the remote MIHF to perform a registration or re-registration. The message must contain the Link identifier TLV or Multicast link identifier TLV.
Insert and modify the following parameters:

	MIH Header Fixed Fields (SID=1, Opcode=1, AID=2)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID

(Destination MIHF ID TLV)

	LinkIdentifier (optional)
(Link identifier TLV)

	MulticastLinkIdentifier (optional)

(Multicast link identifier TLV)

	RequestCode

(Register request code TLV)

8. MIH_Register response

Insert the following parameters:

	MIH Header Fixed Fields (SID=1, Opcode=2, AID=2)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID

(Destination MIHF ID TLV)

	Status

(Status TLV)

	ValidTimeInterval (not included if Status does not indicate “Success”)

(Valid time interval TLV)

	MulticastCipherSuite

(Multicast Cipher Suite TLV)

	Certificate

(Certificate TLV)

8. MIH_DeRegister request

8. MIH_DeRegister response

8. MIH_Event_Subscribe request

Change 8.6.1.7 as follows:
This message is sent by a remote MIHF (the subscriber) to subscribe to one or more event types from a particular event origination point. The message must contain the Link identifier TLV or Multicast link identifier TLV.
Insert and modify the following parameters:

	MIH Header Fixed Fields (SID=1, Opcode=1, AID=4)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID

(Destination MIHF ID TLV)

	LinkIdentifier (optional)

(Link identifier TLV)

	MulticastLinkIdentifier (optional)

(Multicast link identifier TLV)

	RequestedMihEventList

(MIH event list TLV)

	EventConfigurationInfoList (optional)

(Event configuration info list TLV)

8. MIH_Event_Subscribe response

8. MIH_Event_Unsubscribe request

Change 8.6.1.9 as follows:
This message is sent by a remote MIHF (the subscriber) to unsubscribe from a set of link-layer events. The message must contain the Link identifier TLV or Multicast link identifier TLV.

Insert and modify the following parameters:

	MIH Header Fixed Fields (SID=1, Opcode=1, AID=5)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID

(Destination MIHF ID TLV)

	LinkIdentifier (optional)

(Link identifier TLV)

	MulticastLinkIdentifier (optional)

(Multicast link identifier TLV)

	RequestedMihEventList

(MIH event list TLV)

8. MIH_Event_Unsubscribe response

8. MIH_Auth indication

8. MIH_Auth response

8. MIH_Termination_Auth request

8. MIH_Termination_Auth response
8. MIH_Push_key request

8. MIH_Push_key response

8. MIH_LL_Auth request

8. MIH_LL_Auth response
8. MIH messages for event service

8. MIH_Link_Detected indication
8. MIH_Link_Up indication

8. MIH_Link_Down indication
8. MIH_Link_Parameters_Report indication

8. MIH_Link_Going_Down indication

8. MIH_Link_Handover_Imminent indication

8. MIH_Link_Handover_Complete indication

8. MIH messages for command service
8. MIH_Link_Get_Parameters request

Change 8.6.3.1 as follows:
This message is used to discover the status of currently available links. The message must contain the Link identifier list TLV or Multicast link identifier TLV.

Insert and modify the following parameters:

	MIH Header Fixed Fields (SID=3, Opcode=1, AID=1)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID

(Destination MIHF ID TLV)

	DeviceStatesRequest (optional)

(Device states request TLV)

	LinkIdentifierList (optional)
(Link identifier list TLV)

	MulticastLinkIdentifier (optional)

(Multicast link identifier TLV)

	GetStatusRequestSet

(Get status request set TLV)

8. MIH_Link_Get_Parameters response

8. MIH_Link_Configure_Thresholds request

Change 8.6.3.3 as follows:
This message is used to configure thresholds of the lower layer link. The message must contain the Link identifier TLV or Multicast link identifier TLV.

Insert and modify the following parameters:

	MIH Header Fixed Fields (SID=3, Opcode=1, AID=2)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID

(Destination MIHF ID TLV)

	LinkIdentifier (optional)
(Link identifier TLV)

	MulticastLinkIdentifier (optional)

(Multicast link identifier TLV)

	ConfigureRequestList

(Configure request list TLV)

8. MIH_Link_Configure_Thresholds response
8. MIH_Link_Actions request

Change the message format as follows:
	MIH Header Fields (SID=3, Opcode=1, AID=3)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID

(Destination MIHF ID TLV)

	LinkActionsList (optional)

(Link actions list TLV)

	MulticastLinkActionList (optional)

(Multicast link action list TLV)

8. MIH_Link_Actions response

8. MIH_Net_HO_Candidate_Query request

8. MIH_Net_HO_Candidate_Query response
8. MIH_MN_HO_Candidate_Query request

8. MIH_MN_HO_Candidate_Query response

8. MIH_N2N_HO_Query_Resources request

8. MIH_N2N_HO_Query_Resources response

8. MIH_MN_HO_Commit request

8. MIH_MN_HO_Commit response

8. MIH_Net_HO_Commit request

Change the message format as follows:
	MIH Header Fields (SID=3, Opcode=1, AID=7)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID

(Destination MIHF ID TLV)

	LinkType

(Link type TLV)

	TargetNetworkInfoList

(List of target network info TLV)

	AssignedResourceSet (optional)
(Assigned resource set TLV)

	LinkActionExecutionDelay (Optional)
(Time interval TLV)

	LinkActionsList (Optional)

(Link actions list TLV)

	MulticastLinkActionsList (optional)

(Multicast Link action list TLV)

8. MIH_Net_HO_Commit response

8. MIH_N2N_HO_Commit request

8. MIH_N2N_HO_Commit response

8. MIH_MN_HO_Complete request

8. MIH_MN_HO_Complete response

8. MIH_N2N_HO_Complete request

8. MIH_N2N_HO_Complete response

8. MIH_Net_HO_Bcast_Commit indication

Add the following subclauses:

8. MIH_Configuration_Update indication

The corresponding MIH primitive of this message is defined in 7.4.30.2.

This message is used by the MIHF to change configuration of the MIH node(s) identified by the Destination Identifier.

The Destination Identifier is passed to the local MIH User as a GroupIdentifier in a MIH_Configuration_Update.indication.
	MIH Header Fields (SID=3, Opcode=3, AID=XX
)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID

(Destination MIHF ID TLV)

	ConfigurationData

(Configuration Data TLV)

8. MIH_MN_Group_Manipulate request

The corresponding MIH primitive of this message is defined in 7.4.31.1.

This message is used by the MIHF to manipulate group membership of MIH node(s) identified by the Destination Identifier.
	MIH Header Fields (SID=3, Opcode=1, AID=XX
)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID

(Destination MIHF ID TLV)

	GroupIdentifier

(Group Identifier TLV)

	GroupAction

(Group Action TLV)

8. MIH_MN_Group_Manipulate response

The corresponding MIH primitive of this message is defined in 7.4.31.3.

This message is used by the MIHF to inform group status of MIH node(s) identified by the Source Identifier.
	MIH Header Fields (SID=3, Opcode=2, AID=XX
)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID

(Destination MIHF ID TLV)

	GroupIdentifier

(Group Identifier TLV)

	SequenceNumber (conditional)ª

(Sequence Number TLV)

	MulticastAddress (optional)

(Multicast Address TLV)

	SubgroupRange (optional)

(Subgroup_Range TLV)

	VerifyGroupKey (optional)

(Verify Group Key TLV)

	AuxData (optional)

(Aux Data TLV)

	CompleteSubtree

(Complete Subtree TLV)

	GroupKeyData

(Group Key Data TLV)

	GroupStatus

(Group Status TLV)

ª This parameter is only used in the case CCM encryption method is used and the group key is not updated.
8. MIH_Net_Group_Manipulate request

The corresponding MIH primitive of this message is defined in 7.4.32.1.

This message is used by the MIHF to manipulate group membership of MIH node(s) identified by the Destination Identifier.
	MIH Header Fields (SID=3, Opcode=1, AID=XX
)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID

(Destination MIHF ID TLV)

	GroupKeyUpdateFlag

(Group Key Update Flag TLV)

	GroupIdentifier

(Group Identifier TLV)

	SequenceNumber (optional)

(Sequence Number TLV)

	MulticastAddress (optional)

(Multicast Address TLV)

	SubgroupRange (optional)

(Subgroup Range TLV)

	VerifyGroupKey (optional)

(Verify Group Key TLV)

	AuxData (optional)

(Aux Data TLV)

	CompleteSubtree

(Complete Subtree TLV)

	GroupKeyData

(Group Key Data TLV)

8. MIH_Net_Group_Manipulate indication

The corresponding MIH primitive of this message is defined in 7.4.32.2.

This message is used by the MIHF to manipulate group membership of MIH node(s) identified by the Destination Identifier.
	MIH Header Fields (SID=3, Opcode=3, AID=XX
)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID

(Destination MIHF ID TLV)

	GroupIdentifier

(Group Identifier TLV)

	GroupKeyUpdateFlag

(Group Key Update Flag TLV)

	SequenceNumber (optional)

(Sequence Number TLV)

	MulticastAddress (optional)

(Multicast Address TLV)

	SubgroupRange (optional)

(Subgroup Range TLV)

	VerifyGroupKey (optional)

(Verify Group Key TLV)

	AuxData (optional)

(Aux Data TLV)

	CompleteSubtree

(Complete Subtree TLV)

	GroupKeyData

(Group Key Data TLV)

8. MIH_Net_Group_Manipulate response

The corresponding MIH primitive of this message is defined in 7.4.32.3.
This message is used by the MIHF to inform group status of MIH node(s) identified by the Source Identifier.
	MIH Header Fields (SID=3, Opcode=2, AID=XX
)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID

(Destination MIHF ID TLV)

	GroupIdentifier

(Group Identifier TLV)

	AuxData (optional)

(Aux Data TLV)

	GroupStatus
(Group Status TLV)

8. MIH_Push_Certificate request

The corresponding MIH primitive of this message is defined in 7.4.33.1.

This message is used by the MIHF to install a certificate to the MIH node identified by the Destination Identifier.
	MIH Header Fields (SID=3, Opcode=1, AID=XX
)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID

(Destination MIHF ID TLV)

	Certificate

(Certificate TLV)

8. MIH_Push_Certificate response

The corresponding MIH primitive of this message is defined in 7.4.33.3.

This message is used by the MIHF to acknowledge receipt of a certificate from a PoS.
	MIH Header Fields (SID=3, Opcode=2, AID=XX
)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID

(Destination MIHF ID TLV)

	CertificateSerialNumber

(Certificate Serial Number TLV)

	CertificateStatus

(Certificate Status TLV)

8. MIH_Revoke_Certificate request

The corresponding MIH primitive of this message is defined in 7.4.34.1.
This message is used by the MIHF to revoke a certificate.
	MIH Header Fields (SID=3, Opcode=1, AID=XX
)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID

(Destination MIHF ID TLV)

	CertificateSerialNumber

(Certificate Serial Number TLV)

	CertificateRevocation

(Certificate Revocation Signature TLV)

8. MIH_Revoke_Certificate response

The corresponding MIH primitive of this message is defined in 7.4.34.3.
This message is used by the MIHF to acknowledge receipt of a certificate revocation request from a PoS.
	MIH Header Fields (SID=3, Opcode=2, AID=XX
)

	Source Identifier = sending MIHF ID

(Source MIHF ID TLV)

	Destination Identifier = receiving MIHF ID

(Destination MIHF ID TLV)

	CertificateStatus

(Certificate Status TLV)

8. MIH messages for information service

8. MIH_Get_Information request

8. MIH_Get_Information response

8. MIH_Push_Information indication

9. MIH protocol protection

NOTE—Editor: The following subclauses are not changed, they appear in order to be able to reference them later.
9.1 Protection established through MIH (D)TLS
9.2 Key establishment through an MIH service access authentication

9.2.1 Key derivation and key hierarchy
9. MIH message protection mechanisms for EAP-generated SAs

Insert the following section:
9. Multicast MIH message protection mechanisms

9. MIH message protection mechanisms for GKB-generated SAs

A Group Key Block (GKB) technology is used to manipulate groups of MNs. A group manipulation command accompanies a target group ID and a GKB. MNs which receive a group manipulation command try to derive a group key from the GKB. If an MN succeeds to derive a group key, the Mobile Node will keep the pair of the target group ID and the group key, which means that the MN belongs to the group designated by the target group ID. Otherwise, if an MN fails to derive a group key from the GKB, it means that the MN does not belong to the group designated by the target group ID. If the Mobile Node currently belongs to the group, it shall leave the group: The MN shall desert the pair of a group ID and a group key which it kept.

A series of group commands may follow a group manipulation command which defines a target group of MNs. A group command is issued, for instance, to instruct the group that the members should handover to a PoA or that they should update their configuration parameters. A payload of a group command can be protected (encrypted) using an SA derived from the group key. The MIH message protection mechanism is based on GKB-generated SAs. The following two steps describe how group manipulation and command delivery are achieved:
· Step 1: A Command Center, which is an MIH PoS, issues a group manipulation command to instruct MNs to join or leave a group. A group manipulation command may also be used to update a group key which the MNs keep. Group manipulation commands may be delivered to MNs through existing multicast channels. And, a multicast channel is associated with a group: If an MN joins a group then it begins to listen to the multicast channel associated with the group. The address used by this multicast channel may be provided in the MIH_Net_Group_Manipulate messages, as indicated in subclause 8.6.

· Step 2: A Command Center issues to a group of MNs a group command to instruct the MNs in the group to take an action. The target group is designated by the group ID field in the group command. The group command may be delivered through the multicast channel associated with the group ID. A group command may alternatively take two types of payload: Encrypted or non-encrypted. If a payload is encrypted, it is encrypted with a key derived from the current group key.

Each MN has a Device Key, which is a sequence of AES keys. The number of keys in a Device Key Set is eight (8), sixteen (16), twenty-four (24) or thirty-two (32), which is a system-wide constant. The format of Device Key may vary depending on implementations and is out of the scope of this specification. For convenience sake, however, an example format of a Device Key is described later in 9.4.2.1.2. When confidentiality is not required for group manipulation, then a GKB without encrypted key data suffices for the purpose. Note that an MN need not have an AES key if a GKB always has no encrypted key data.

A Command Center is supposed to have a module called GKB Generator. A GKB Generator receives “virtually” all the Device Keys assigned to all the MNs, a set of MIHF IDs and a key. The set of MIHF IDs indicates the MNs that constitute a group. The key is a group key for that group. A GKB Generator does not necessarily receive in fact all the Device Keys. For instance, only passing to the generator some seeds to generate any Device Key may suffice. On receiving those data, a GKB Generator outputs a GKB

, or several GKBs.
Although detailed procedures of an MIH User at a Command Center to prepare an MIH request for group manipulation, handover or configuration update depend on implementations of the User, a rough sketch of the behaviors of an MIH User is given in 9.4.2. The same section (i.e., 9.4.2) defines a series of actions to be performed by an MIHF which receives an indication of group manipulation, handover or configuration update. Those actions of a receiving MIHF are normative.

There are four modules involved in: An MIH User of a Command Center, an MIHF of a Command Center, an MIH User of an MN and an MIHF of an MN. Indispensable components for each of the modules relevant to group manipulation and group commands are listed as follows:

MIH User of Command Center:

· A GKB Generator.
· All the MIHF IDs and all the Device Keys each of which is uniquely associated with one of the MIHF IDs. As is described in 9.4.2.1.1, a number called Leaf Number is uniquely asssociated with a Device Key. The MIH User also has the Leaf Numbers.
· A Group Management Database which stores a group management table, a row of which has the following five columns at least: A Group MIHF ID, a group key, a Device Key, a Leaf Number and an (Individual) MIHF ID. An MN having the MIHF ID, the Device Key and the Leaf Number in a row belongs to the group designated by the Group MIHF ID recorded in the same row.

MIHF of Command Center:

· A signing key. The key is for creation of a signature of the Command Center.

· A Multicast Address Database which stores a multicast address table, a row of which has the following two columns at least: A Group MIHF ID and a multicast address. The multicast address in a row is associated with the group designated by the Group ID recorded in the same row.

MIHF of an MN:

· A Device Key.

· A verification key. The key is for verification of a signature made by the Command Center.

· A Group Database which stores a group table, a row of which has the following three columns at least: A Group MIFH ID, a group key and a multicast address. The MN belongs to the group designated by the group MIHF ID in a row. The group key for the group is the one recorded in the same row, and the multicast address recorded in the same row is associated with the group.
9. Secure group manipulation with group key distribution

Figure 45 illustrates group manipulation command distribution initiated by a Command Center via a multicast channel. When an MIH User of the Command Center generates a MIH_Net_Group_Manipulate.request described in 7.4.32. And then the MIH User passes the request to the MIHF of the Command Center. Upon receiving the request, the MIHF generates MIH_Net_Group_Manipulate indication described in 8.6.3.28, and send it to MNs via multicast channels. When an MN receives the MIH_Net_Group_Manipulate indication message, the MIHF of the MN processes the message. After processing the message, the MIHF sends MIH_Group_Manipulate.indication to the MIH User of the MN.

[image: image4.emf]Command Center

PoS

MIH User

MIHF

Client

MN

MIH User

MIHF

MIH_Net_Group_Manipulate.request

MIH_Net_Group_Manipulate indication

MIH_Net_Group_Manipulate.indication

Figure 31 —Example of group manipulation distribution using multicast mechanisms

In a typical example, an MIH User of a Command Center generates MIH_Net_Group_Manipulate.request described in 7.4.32 as follows:

l) Decide
 a group to manipulate. If it is a new group, choose a GroupIdentifer which is not currently in use by consulting with the Group Management Database. Then, decide group members, i.e. MNs, of the group and a group key for the group. For an already existing group, new members to be added to the group are added to the group members, and members to be removed from the group are removed from the group members.
m) Send to the GKB Generator all the Device Keys, the Leaf Numbers of the group members determined in a) and the group key. Then, the MIH User receives from the GKB generator a GKB or a set of GKBs: A GKB contains a CompleteSubtree field, a GroupKeyData field and a SubgroupRange field. A SubgroupRange
 is a pair of Leaf Numbers which defines a range of Leaf Numbers. A simple example which shows how to make those fields is given in Annex P. A GKB contains a SubgroupRange field if it is one of divided GKBs. Note that one MIH_Net_Group_Manipulate.request contains one and only one GKB. Plural GKBs result in plural requests.

n) (Optional.) Define the AuxData field.

o) Define the DestinationIdentifier. A DestinationIdentifier is a Group MIHF ID which represents an existing group associated with a multicast address. A care is needed to distribute a divided GKB. The SubgroupRange indicates, as a range of Leaf Numbers, the MNs which are the distribution targets of the GKB. If an MN is in the range, it should receive the divided GKB.
p) Generate an MIH_Net_Group_Manipulate.request from the DestinationIdentifier, the GroupIdentifier, the SubgroupRange (an option), the VerifyGroupKey
 (an option), the AuxData (an option), the CompleteSubtree and the GroupKeyData
. Send it to the local MIHF.

q) Update the Group Management Database. If the target group of manipulation is an existing group, add/remove members (MIHF IDs, Device Keys and Leaf Numbers) and update its group key. If the target group is a new one, add a new Group MIHF ID (= GroupIdentifier) with its new members and its new group key.

When the MIHF of the Command Center receives an MIH_Net_Group_Manipulate.request which is generated by the MIH User, the MIHF generates and sends MIH_Net_Group_Manipulate indications to appropriate multicast channels or to a broadcast channel:

r) Generate a Source MIHF ID TLV using its own individual MIHF ID.

s) Generate a Destination MIHF ID TLV from the DestinationIdentifiner in the received MIH_Group_Mainpulate.request.

t) Generate a Group Identifier TLV from the GroupIdentifier in the received MIH_Group_Manipulation.request.

u) Generate, as needed, a Multicast Address TLV from the multicast address corresponding to the DestinationIdentifier in the received MIH_Net_Group_Manipulate.request. The Multicast Address Database serves for the purpose of finding the multicast address.

v) (Optional.) Generate a SubgroupRange TLV from the SubgroupRange in the received MIH_Net_Group_Mainpulate.request.

w) (Optional.) Generate a Verify Group Key TLV from the VerifyGroupKey in the received MIH_Net_Group_Manipulate.request.

x) (Optional.) Generate an Aux Data TLV from the AuxData in the received MIH_Net_Group_Manipulate.request.

y) Generate a Complete Subtree TLV from the CompleteSubtree in the received MIH_Net_Group_Manipulate.request.

z) Generate a Group Key Data TLV from the GroupKeyData in the received MIH_Net_Group_Manipulate.request.

aa) Generate a Signature TLV shown in 8.4.2 using the signing key of the Command Center.

ab) Generate an MIH_Net_Group_Manipulate indication using the preceding TLVs, and send the MIH_Net_Group_Manipulate indication message to the multicast address corresponding to the DestinationIdentifier.

ac) Update Multicast Address Database if necessary. It is assumed that the MIHF is equipped with a mean to obtain a multicast address associated with a Group MIHF ID. The multicast address may be contained in the MIH_Net_Group_Manipulate.request received from the MIH User. If the DestinationIdentifier in the received request is not registered in the database, obtain the multicast address associated with the DestinationIdentifier and update the database with the DestinationIdentifier and the multicast address.
ad)
When a client MN receives a group manipulation command issued by a Command Center, the MIHF of the MN processes the command:

ae) The MIHF obtains a Source Identifier from the Source MIHF ID TLV.

af) The MIHF verifies the Signature TLV using the verification key corresponding to the obtained SourceIdentifier. If the verification fails, the MIHF shall cancel the following steps and stop processing the command.

ag) The MIHF checks the DestinationIdentifier in the Destination MIHF ID TLV. If the DestinationIdentifier does not match one of the following MIHF IDs, the MIHF shall cancel the following steps and stop processing the command: (i) A Group MIHF ID corresponding to a broadcast address, (ii) a Group MIHF ID which is registered with a multicast address in the Group Database, or (iii) the MN's own individual MIHF ID.

ah) If a SubgroupRange TLV exists in the indication, the MIHF obtains a SubgroupRange and check whether its own Leaf Number is contained in the SubgroupRange or not. If it is not, the MIHF shall cancel the following steps and stop processing.

ai) A GKB is comprised of the Complete Subtree TLV, the Group Key Data TLV and optionally the Verify Group Key TLV. The MIHF processes the Complete Subtree TLV and the Group Key Data TLV as described in 9.4.2.1.2. If a Verify Group Key TLV exists, the MIHF verifies the group key derived from the GKB. If a group key is obtained (and verified), go to the next step (Step f)). Otherwise, go to Step k) [Leave Group].
aj) The MIHF obtains
ak) a GroupIdentifier in the Group Identifier TLV. The MIHF checks whether the GroupIdentifier has already been registered or not in the Group Database. If it is, go to the next step (Step g) [Update Group]). Otherwise, go to Step i) [Join Group].
al)
am) [Update Group] The MIHF obtains a multicast address associated with the GroupIdentifier. The multicast address may be obtained from a server. Or, the received indication may accompany it in the Multicast Address TLV. Update the Group Database with the GroupIdentifier, the associated multicast address and the group key obtained in Step e).
an) The MIHF throws an MIH_Net_Group_Manipulate.indication described in 7.4.32.2 to the MIH User. The GroupStatus field of the indication shall be “Join operation successful” (0). The process shall successfully terminate.
ao)
ap) [Join Group] The MIHF obtains a multicast address associated with the GroupIdentifier. The multicast address may be obtained from a server. Or, the received indication may accompany it in the Multicast Address TLV. Save in the Group Database the GroupIdentifier, the associated multicast address and the group key obtained in Step e).

aq) The MIHF throws an MIH_Net_Group_Manipulate.indication described in 7.4.32.2 to the MIH User. The GroupStatus field shall be “Join operation successful” (0). The process shall successfully terminate.

ar)
as) [Leave Group] The MIHF deletes a record containing the GroupIdentifier in the Group Database. The MIHF throws an MIH_Net_Group_Manipulation.indication described in 7.4.32.2 to the MIH User. The GroupStatus field shall be “Leave operation successful” (4). The process shall successfully terminate.
9. GKB operation by the complete subtree method

A GKB is generated based on a binary tree. It is assumed for a while that a key is assigned to each node of the binary tree. Let a key assigned to a node of the tree be called Node Key. A version of GKB is also used which is derived from a binary tree without Node Keys. This version of GKB without a group key data is used when confidentiality is not required. A node of a binary tree is naturally identified with a bit sequence. (See Figure 1) The maximum length of bit sequences shall be equal to the Depth of the binary tree. The Depth shall be one of the following values: eight (8), sixteen (16), twenty-four (24) or thirty-two (32). The Depth depends on design of the system, and it will be a fixed value once the system is initiated. For convenience of explanation, suppose hereafter the Depth is 8 unless otherwise stated.

[image: image5.emf]0Root Node10000000110101Depth = 3

Figure 1

A GKB contains a complete subtree part and a group key data part. A group key data part appears only when a GKB is used to deliver a group key. A complete subtree part appears as a field of CompleteSubtree in an MIH_NET_Group_Manipulate.request defined in 7.4.32.1. And, a group key data part appears as a field of GroupKeyData in an MIH_Net_Group_Manipulate.request defined in 7.4.32.1. A complete subtree part is a sequence of GKB Indices. A GKB Index is a pair of a Node Bit Length and a Node Index. A Node Index stores the bit sequence for a node, and the Node Bit Length paired with the Node Index is an octet which stores the length of the bit sequence. A Node Index is right aligned in the Internet order. The size of a Node Index varies depending on the value of the preceding Node Bit Length. If the value of a Node Bit Length is not greater than 8, the size of the following Node Index is 1 octet (= 8 bits). If the value of a Node Bit Length is greater than 8 and not greater than 16, the size of the following Node Index is 2 octets. If the value of a Node Bit Length is greater than 16 and not greater than 24, the size of the following Node Index is 3 octets. And, if the value of a Node Bit Length is greater than 24 and not greater than 32, the size of the following Node Index is 4 octets. There is one-to-one correspondence between a GKB Index and a node of the binary tree. An example of GKB Index is (0x05, 0b00010011). A Node Index shall have a zero padding. This GKB Index represents the node ‘10011’ in the binary tree of Depth 8, Depth 16, Depth 24 or Depth 32. Another example of GKB Index is (0x14, 0b00000110010100001110), which represents the node ‘0110010100001110’ in the binary tree of Depth 24 or Depth 32. If a system adopts the binary tree of Depth 16, the size of a Node Index in the system is 1 octet or 2 octets.
Note that GKB Indices are sequenced following the “dictionary order”: Let (L1, I1) and (L2, I2) be two GKB Indices, where L1 and L2 are Node Bit Lengths and I1 and I2 are Node Indices. The dictionary order on the set of GKB Indices is defined as follows: (L1, I1) <= (L2, I2) if and only if L1 < L2 or (L1 == L2 and I1 <= I2), where L1, L2, I1 and I2 are considered as natural numbers.

A group key data part of a GKB is a sequence of encrypted group keys, where a group key is encrypted by Node Keys. There is one-one correspondence between a complete subtree part and a key data part in a GKB. The number of GKB Indices in the complete subtree part and the number of encrypted group keys in the key data part. And, the n-th encrypted group key in the group key part is the group key encrypted by the Node Key which is assigned to the node designated by the n-th GKB Index in the complete subtree part. The key length of a group key and the Node Keys is 128bits. The encryption is made using the AES-ECB mode.
9.4.2.1.1.
Encapsulation/Decapsulation

An MIHF has a Device Key. The format of Device Key may vary depending on implementations and is out of the scope of this specification. The procedures of GKB encapsulation/decapsulation are explained here using an example format of Device Key. A Device Key is a sequence of Device Key Units. The number of Device Key Units in a Device Key is equal to the Depth of the tree. A Device Key Unit is a pair of a GKB Index and a Node Key. The GKB Index in a Device Key Unit represents the node of the binary tree to which the Node Key in the Device Key Unit is assigned. A Device Key stores nodes and the associated Node Keys along a path in the binary tree which starts at the root node and arrives at a leaf node descending the tree.
9. Encapsulation

Annex P provides an example of creation of a GKB at a GKB Generator.

9. Decapsulation

At first, the decapsulation procedure for a GKB with a group key data part is described as follows:

i) An MIHF finds a GKB Index in the complete subtree part of the GKB and a Device Key Unit in the Device Key that the MIHF itself owns such that the GKB Index and the GKB Index of the Device Key Unit are identical. Suppose that the GKB Index thus found is the n-th GKB Index in the complete subtree part. If the MIHF fails to find such GKB Indices, the procedure shall terminate.
· If the procedure terminates here, it means that the MN does not belong to the group designated by the GroupIdentifier defined in 7.4.32.1. The MN shall leave the group if it currently belongs to the group.
ii) Using the Node Key in the Device Key Unit found in i), the MIHF decrypts the n-th encrypted group key in the key data part. The result of the decryption is a group key KG.
· The group key KG is the group key for the group designated by the GroupIdentifier. The MN shall belong to the group.
iii) If there exists a field of VerifyGroupKey in the MIH_Net_Group_Manipulate.request defined in 7.4.32.1, check the MAC in the VerifyGroupKey field using the group key KG. If it fails, the decapsulation procedure shall abort.
The “decapsulation” (or “interpretation” in this case) procedure for a GKB without a key data part is described as follows:
i) An MIHF finds a GKB Index in the complete subtree part of the GKB and a Device Key Unit in the Device Key that the MIHF owns such that the GKB Index and the GKB Index of the Device Key Unit are identical. If the MIHF fails to find such GKB Indices, the procedure shall terminate.
· If the procedure terminates here, it means that the MN does not belong to the group designated by the GroupIdentifier defined in 7.4.32.1. The MN shall leave the group if it currently belongs to the group.
· If the procedure succeeds to find a matching pair, it means that the MN belongs to the group designated by the GroupIdentifier defined in 7.4.32.1.
Note that an MN need not necessarily have a Device Key when GKBs without keys are used. Then, an MN is only required to have a sequence of GKB Indices.

at)
au)
av)
aw)
9. Group key derivation and group key hierarchy

[image: image6.emf]MGK

K

MIGIKMIGMEKMIGEK

MIGSK

Figure 32 —Key derivation example

When an MN successfully decapsulates a GKB, it obtains a master group key (MGK). Three keys are derived from MGK. The keys derived from the MGK are a group integrity key (MIGIK) used to verify the MGK, a group manipulation encryption key (MIGMEK) used to protect a group manipulation command and a group encryption key (MIGEK) used to protect the group command. A type of deriving key is specified by a multicast ciphersuites described in 9.4.6.

For the key derivation, the following notations and parameters are used.
· K: key derivation key. It is truncated from a master group key (MGK). The length of K is determined by the pseudorandom function (PRF) used for key derivation. If HMAC-SHA-1 or HMAC-SHA-256 is used as a PRF, then the full MGK is used as key derivation key, K. If CMAC-AES is used as a PRF, then the firs 128 bits of MGK are used as derivation key, K.
· L: The binary length of derived keying material MIGSK. L is determined by selected multicast ciphersuites described in 9.4.6.
· h: The output binary length of PRF used in the key derivation. That is, h is the length of the block of the keying material derived by one PRF execution. Specifically, for HMAC-SHA-1, h = 160 bits; for HMAC-256, h = 256 bits; for CMAC-AES, h = 128 bits.

· n: The number of iterations of PRF in order to generate L-bits keying material.
· c: The multicast ciphersuite code is a one octet string specified for each ciphersuite. The code is defined in 9.4.6.
· v: The length of the binary representation of the counter and the length of keying material L. The default value for v is 32.

· “MIGSK”: 0x4D4947534B, ASCII code in hex for string “MIGSK.”
· [a]2: Binary representation of integer a with a given length.
For given PRF, the key derivation for MIGSK can be described in the following procedures:
Fixed input values: h and v.

Input: K, L, and multicast ciphersuite code.

Process:

a) n := \lceil L/h \rceil
b) If n > 2v-1, then indicate an error and stop.
c) Result(0) := empty string.

d) For i = 1 to n, do

 i) K(i) := PRF(K, “MIGSK” || [i]2 || c || [L]2).

 ii) Result(i) = Result(i-1) || K(i).

 e) Return Result(n) and MIGSK is the leftmost L bits of Result(n).

Output: MIGSK.

The MIGSK is parsed in such a way that

 MIGSK = MIGIK || MIGMEK || MIGEK.
With the above procedure, a key hierarchy is derived as shown in Figure 46.
9. Multicast message encryption based on group key
When a command center issues an MIH_Configuration_Update indication, the MIH User of the command center generates an MIH_Configuration_Update.request described in 7.4.30.1 and send it to the MIHF of the command center. The Configuration Data may be encrypted by the MIGEK derived from the MKG, which is the group key associated with the DestinationIdentifier. The associated group key is found in the Group Management Database. Upon receiving the request, the MIHF of the command center behaves as follows:

ax) Generate a Source MIHF ID TLV based on its own individual MIHF ID.

ay) Generate a Destination MIHF ID TLV based on the DestinationIdentifier in the received request.

az) Generate a Configuration Data TLV from the ConfigurationData in the received request.

ba) Consulting with the Multicast Address Database, find the multicast address associated with the DesitinationIdentifer in the received request.

bb) Generate an MIH_Configuration_Update indication described in 8.6.3.24, and send it to the multicast address found in Step d).
[image: image7.emf]Command Center

PoS

MIH User

MIHF

Client

MN

MIH User

MIHF

MIH_Configuration_Update.request

MIH_Configuration_Update indication

MIH_Configuration_Update.indication

Figure 33 —Example of configuration update distribution using multicast mechanisms

When the MIHF of an MN receives an MIH_Configuration_Update indication message, it throws an MIH_Configuration_Update.indication described in 7.4.30.2 to the MIH User of the MN:

bc) Extract a Source Identifier from the Source MIHF ID TLV.

bd) Verify the Signature TLV using the verification key corresponding with the extracted Source Identifier. If the verification fails, cancel the following steps and stop processing.

be) Extract a Destination Identifier from the Destination MIHF ID TLV and checks if the group designated by the Destination Identifier is registered in the Group Database. If it is not, cancel the following steps and stop processing.

bf) Extract a ConfigurationData rom the Configuration Data TLV.

bg) If the ConfigurationData is encrypted, decrypt it with the MIGEK derived from the MGK, where the MGK is the group key associated with the Destination Identifier. The group key is found in the Group Database.

bh) Generate a Source Identifier TLV from the extracted Source Identifier.

bi) Generate a GroupIdentifer TLV from the extracted Destination Identifer.

bj) Generate a ConfigurationData TLV from the extracted ConfigurationData.

bk) Generate a MIH_Configuration_Update.indication described in 7.4.30.2 and throw it to the MIH User.

9. Signature and Certificate Management

In order to enable signing functionality, the message source requests certificates for public key using an out-of-band mechanism that is not specified in this specification. The message source provides the certificates to destination devices. Message signing procedure, signature verification procedure and certificate management procedure are described in 9.4.4.1, 9.4.4.2 and 9.4.4.3, respectively.

9. Multicast Message Signatures

Multicast Messages are signed with the message source using a private key of the message source. Integrity and proof of origin of a multicast message is verified by verifying the message signature with the public key of a message source.

On Receipt of signed multicast message there is an optional response indicating validity of signature. Message source requests certificates for key updates. Message source provides updates of certificates to destination devices (with overlap period).

The message content is signed using elliptical curve cryptography.

9. Signature Verification

The signature is verified using the message source signature verification key. The endpoints might have more than one key used for signature verification. This is to allow for key updates to happen in an efficient manner for large systems.

The message source will identify which key is to be used for the multicast message so that verification will utilize the correct key for signature verification.

9. Certificate Management

A root of trust will exist for the multicast nodes. The root of trust is envisioned to be a certificate authority. X.509 format certificates will be utilized. The root of trust will establish the binding between the identity of the message source and the public/private key pair used for signature generation and verification.

The certificate will include the identity of the certificate authority, the identity of the message source, the public key in use and the expiration date of the certificate and the certificate authority’s signature. For an endpoint to trust the certificate it must have the certificate authority public key.

The initial certificates for multicast signature verification are distributed to multicast destinations as part of the provisioning process to the multi-node network. The certificates will include the certificate authority certificate used to verify the initial and updated certificates.

There will also be one or more certificates that are bound to the identity of the multicast source.

As part of the key update or revocation process, a new certificate will be provided to multicast destinations using the multicast mechanism. There needs to be a mechanism for multicast destinations to acknowledge the receipt of the multicast message.

When there is reduced trust in a certificate a mechanism will be provided to revoke the certificate from service. This mechanism will utilize the multicast messaging mechanism. Multicast destinations will need to provide a reply that indicates they have successfully revoked the certificate.

Insert the following section.

9. Multicast Ciphersuites

The ciphersuites used for securing multicast MIH message is defined in Table 26.

Table 2 —Multicast Ciphersuites

	Code
	Encryption Algorithm for Group Manipulation
	Encryption Algorithm for Group Command
	Digital Signature Algorithm
	MAC Algorithm for Verify Group Key

	10000000
	NULL
	NULL
	NULL
	NULL

	10001000
	AES_CCM-128
	AES_CCM-128
	ECDSA-224
	AES_CMAC-128

	10001001
	AES_CCM-128
	AES_CCM-128
	ECDSA-256
	AES_CMAC-128

	10001100
	AES_CCM-128
	NULL
	ECDSA-224
	AES_CMAC-128

	10001101
	AES_CCM-128
	NULL
	ECDSA-256
	AES_CMAC-128

	10010000
	NULL
	NULL
	ECDSA-224
	NULL

	10010001
	NULL
	NULL
	ECDSA-256
	NULL

9. Common procedures

9. Sending

When a PoS issues an MIH Service Specific TLV, the MIHF of the PoA generates a signature of the TLV using the signing key of the PoS and creates a Signature TLV from the generated signature.

9. Receiving

When an MN receives an MIH Specific TLV, the MIHF of the MN behaves as follows:

bl) Verify the signature in the Signature TLV using the verification key corresponding the Source Identifier extracted from the received Source MIHF ID TLV. If the verification fails, cancel the following steps and stop processing.

bm) Extract a Destination Identifier from the received Destination MIHF ID TLV. Check if the Destination Identifier is registered as a Group ID in the Group Database. If it is not, cancel the following steps and stop processing.

bn) If a Security TLV exists in the MIH Specific TLV, decrypt the Security TLV using the MIGMEK derived from the MKG. The MGK is the group key corresponding to the Destination Identifier extracted in the previous step. The group key is found in the Group Database.

10. Proactive authentication
Annex A
(informative)
Bibliography
Bibliographical references are resources that provide additional or helpful material but do not need to be understood or used to implement this standard. Reference to these resources is made for informational use only.
Annex B
(normative)
Quality of service mapping
Annex C
(informative)
Handover procedures
Annex D
(normative)
Mapping MIH messages to reference points
Annex E
(normative)
Media specific mapping for SAPs
Annex F
(normative)
Data tyte definition
F.1 Derived data types
F.1.1 Data types for link identification and manipulation

Change Table F.4 as follows:
Table 3 —Data types for links

	Data type name
	Derived from
	Definition

	MULTICAST_ACTION_REQ
	SEQUENCE(

NET_TYPE_INC,

CHOICE(NULL, LINK_ADDR),

LINK_ACTION,

LINK_AC_EX_TIME

)
	A set of handover action request parameters destined to a group of links. The choice of LINK_ADDR is to provide PoA address information when the LINK_ACTION contains the attribute for DATA_FWD_REQ.

F.1.2 Data type for MIHF identification

Change the following row in Table F.19:
Table 4 —Data type for MIH identification
	Data type name
	Derived from
	Definition

	MIHF_ID

	OCTET_STRING
	The MIHF Identifier: MIHF_ID is a network access identifier (NAI). NAI shall be unique as per IETF RFC 4282. If L3 communication is used and MIHF entity resides in the network node, then MIHF_ID is

the fully qualified domain name or NAI-encoded IP address (IP4_ADDR or IP6_ADDR) of the entity that hosts the MIH Services.

If L2 communication is used then MIHF_ID is the NAI-encoded linklayer address (LINK_ADDR) of the entity that hosts the MIH services.

In an NAI-encoded IP address or link-layer address, each octet of binary-encoded IP4_ADDR, IP6_ADDR and LINK_ADDR data is encoded in the username part of the NAI as .“\.” followed by the octet value. MIHF ID of zero length may be used when a destination MIHF ID is not known. A broadcast MIHF identifier is defined as an MIHF ID of zero length. A multicast MIHF identifier is defined as a NAI-encoded multicast link-layer address in the case L2 communication is used, a NAI-encoded IP address (IP4_ADDR or IP6_ADDR) in case L3 communication is used or the fully qualified domain name preceded by the prefic “_G_”, for example _G_sensornodes_area_A@foo.bar.

When an MIH protocol message with zero length broadcast MIHF ID is transmitted over the L2 data plane, a group MAC address (01-80-C2-00-00-0E) shall be used (see IEEE P802.1aj/D2.2). The maximum length is 253 octets.

F.1.3 Data type for security

Change Table F.24 as follows:
Table 5 —Data type for security
	Data type name
	Derived from
	Definition

	ID_TYPE
	ENUMERATED
	The type of security association.

0: TLS-generated;

1: EAP-generated

2: GKB-generated

	CERTIFICATE
	OCTET_STRING
	Provides a X.509 Certificate

	CERT_SERIAL_NUMBER
	OCTET_STRING
	Provides X.509 formatted certificate serial number which are unique by certificate authority.

	CERT_STATUS
	ENUMERATED
	This indicates the status of the certificate being pushed or revoked

0 – Not Present – indicates that certificate is not present

1 – Certificate Valid – indicates that certificate is present and that the associated public key is being used to verify signatures

2 – Certificate Revoked

3 -- Certificate Expired

	GROUP_KEY_UPDATE_FLAG

	ENUMERATED
	This indicates if the group key has been updated

0: Key is not updated

1: Key is updated

	GROUP_MGT_ACTION
	ENUMERATED
	This indicates a manipulation command.

0: Join the group.

1: Leave the group.

	GROUP_STATUS
(add unchanged, add success/failure)
	ENUMERATED
	This indicates a status of group manipulation command.

0: Join operation successful

1:Join operation unsuccessful

2: Unauthorized to join the group

3: Leave operation successful

4: Leave operation unsuccessful

	MIH_SEC_CAP
	SEQUENCE(

TLS_CAP,

EAP_CAP,

MULTICAST_CAP,

)
	Represents the MIH security capabilities.

	MULTICAST_CAP
	UNSIGNED_INT(2)
	A multicast ciphersuite. Available multicast ciphersuites are defined in 9.6.

	RESPONSE_FLAG
	ENUMERATED
	This indicates if an answer is required

0: No response is needed

1: Response is needed

	SIGNATURE
	OCTET_STRING
	A digital signature data.

	SUBGROUP_RANGE
	CHOICE(

 SEQUENCE(

 UNSIGNED_INT(1),

 UNSIGNED_INT(1)),

SEQUENCE(

 UNSIGNED_INT(2),

 UNSIGNED_INT(2)),

SEQUENCE(

 UNSIGNED_INT(3),

 UNSIGNED_INT(3)),

SEQUENCE(

 UNSIGNED_INT(4),

 UNSIGNED_INT(4)))
	A range of valid leaf identifiers in a complete subtree of a GKB. The first integer indicates the lowest value of the range. The second integer indicates the highest value of the range.

Annex G
(normative)
Information element identifiers
Annex H
(normative)
MIIS basic schema
Annex I
(informative)
Making user extensions to MIIS schema
Annex J
(normative)
IEEE 802.21 MIB

Annex K
(informative)
Example of MIH message fragmentation
Annex L
(normative)
MIH protocol message code assignments
Modify Table L.1 as follows:
Table 6 —AID assignment
	MIH messages
	AID

	MIH messages for Command Service

	MIH_Configuration_Update
	TBD

	MIH_MN_Group_Manipulate
	TBD

	MIH_Net_Group_Manipulate
	TBD

	MIH_Push_Certificate
	TBD

	MIH_Revoke_Certificate
	TBD

Modify Table L.2 as follows:
Table 7 —Type values for TLV encoding
	TLV type name
	TLV type value
	Data Type

	Multicast Ciphersuite
	TBD
	MULTICAST_CAP

	Configuration Data
	TBD
	OCTET_STRING

	Group Identifier
	TBD
	CHOICE(MIHF_ID, ENCR_DATABLOCK)

	Verify Group Key
	TBD
	OCTET_STRING

	Aux Data
	TBD
	OCTET_STRING

	Complete Subtree
	TBD
	OCTET_STRING

	Group Key Data
	TBD
	ENCR_DATABLOCK

	Multicast Address
	TBD
	CHOICE(TRANSPORT_ADDRESS, ENCR_BLOCKDATA)

	Subgroup Range
	TBD
	SUBGROUP_RANGE

	Signature
	TBD
	SIGNATURE

	Certificate
	TBD
	CERTIFICATE

	Certificate Serial Number
	TBD
	CERT_SERIAL_NUMBER

	Certificate Status
	TBD
	CERT_STATUS

	Sequence Number
	TBD
	OCTET_STRING

	Multicast Groups list TLV
	TBD
	LIST(MULTICAST_GRP)

	Group_Status TLV
	TBD
	LIST(

SEQUENCE(MIHF_ID,

STATUS,

VALID_TIMEa))

	Multicast link identifier
	TBD
	NET_TYPE_INC

	Multicast link action list
	TBD
	LIST(MULTICAST_ACTION_REQ)

	Response Flag
	TBD
	RESPONSE_FLAG

	Group Action
	TBD
	GROUP_MGT_ACTION

	Certificate Revocation Signature
	TBD
	SIGNATURE

Annex M
(normative)
Protocol implementation conformance statement (PICS) proforma
Annex N
(informative)
Authentication and key distribution procedures
Annex O
(informative)
Protection through transport protocols
Annex P
An example is introduced to explain the basic principle of GKB and how to make a GKB. Consider a binary tree of Depth 4. The other nodes other than the root node are labeled ‘0’, ‘1’, ‘00’, ‘01’, ‘10’, ‘11’, …, ‘0000’, ‘1111’, up to down and left to right. (See Figure 1.) The label is sometimes called Node Index. A Node Index assigned to a leaf is especially called Leaf Number. Each node is assigned a key: k(0), k(00), k(01), …, k(0000), k(0001), …, k(1110), k(1111). Let the keys be called Node Keys. An MN is associated with a unique leaf. Thus, sixteen MNs are associated with the leaves of the tree: Call them ‘MN0’, ‘MN1’, …, ‘MN15’, left to right. Each MN is assigned a set of pairs of a Node Index and a Node Key, which is called Device Key: An MN is assigned the pairs along the path that is descending from the root to the leaf associated with the MN. For instance, MN3 is assigned the following Device Key: {(0, k(0)), (00, k(00)), (001, k(001)), (0011, k(0011))}.

[image: image8.emf]0Root Node10000000110101Depth = 400000001010110001001110111101111

Figure 1: An Example Tree
A set of MNs is called group if and only if they share a group ID and a group key. At first, make all the sixteen MNs constitute one group, say, GA. Then, make a GKB such that {(0, E(k(0))[KGA]), (1, E(k(1))[KGA]} where KGA is the group key and E(k)[D] denotes data D encrypted by a key k. Check if all the MNs can share the group key. The Device Key assigned to any MN has the Node Keys k(0) or k(1). Therefore, any MN can decrypt the preceding GKB to derive the group key KGA. The group key is shared by all the MNs as expected.
=
Then, let MN1, MN4 and MN5 be removed from the group G_A. Then, the GKB required for this is as follows:

GKB1={(0000,E(k(0000))[K_GA]),

 (001,E(k(001))[K_GA]),(011,E(k(011))[K_GA])}.

And, let G_B be a group which consists of MN0, MN1, MN2, MN3 and MN4. The GKB for G_B is the following GKB2:

GKB2={(00,E(k(00))[K_GB]),(0100,E(k(0100))[K_GB])},

where K_GB is a group key for the group G_B. Note that multiple groups with their own group keys may exist on one tree. An MN with one Device Key Set may belong to multiple groups at the same time.

Group manipulation consists of several operations such as add, remove, key update, and so on. Only one GKB can add some MNs and remove some MNs at the same time. Key update may also occur at the same time. The operations depend on the behavior of each MN which receives a GKB. An overview of the processing steps is described as follows: Let us assume that a group manipulation command has a group ID and a GKB in its payload.

1.
An MN receives a group manipulation command.

2.
The MN processes the GKB in the command.

3.
If the MN fails to derive a key from the GKB, go to 6.

4.
The MN joins the group designated by the group ID with the (master) group key being the key derived from the GKB.

5.
END.

6.
If the MN is currently in the group designated by the group ID, the MN leaves the group.

7.
Otherwise, the MN does nothing.

8.
END.

The group key in the GKB is taken so that it is a unique update from group keys which have been assigned to the group. In general, it is important to keep forward access control when an MN leaves a group: A member removed from a group should be denied access to a new group key. Using GKB, only one command can remove some members from a group and make the group key updated for remaining members. This achieves the forward access control. And, Using GKB, only one command can add some members to a group and make the group key updated. This achieves the backward access control: A member added to the group is denied access to an old group key.
The Institute of Electrical and Electronics Engineers, Inc.

3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 20XX by The Institute of Electrical and Electronics Engineers, Inc.

All rights reserved. Published <XX MONTH 20XX>. Printed in the United States of America.

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by The Institute of Electrical and Electronics �Engineers, Incorporated.

PDF:	ISBN 978-0-XXXX-XXXX-X	STDXXXXX

Print:	ISBN 978-0-XXXX-XXXX-X	STDPDXXXXX

IEEE prohibits discrimination, harassment and bullying. For more information, visit � HYPERLINK "http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html" �http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html�.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

IEEE Standards Dictionary Online subscription is available at:

� HYPERLINK "http://www.ieee.org/portal/innovate/products/standard/standards_dictionary.html" �http://www.ieee.org/portal/innovate/products/standard/standards_dictionary.html�.

�Command or service management?

�Is this primitives also considered local?

�Need to check the behavior of request indication messages based on the ResponseFlag and indicate it somewhere

.21b supports this behavior, need to express somewhere how this flag is set, if the message received is request then it is 1, else is 0.

�Need to account for the zero length mcast

�Say in some place that the ACK service should not be used with mcast

�To be added once it is clear it belongs to command service

�To be added once it is clear it belongs to command service

�To be added once it is clear it belongs to command service

�To be added once it is clear it belongs to command service

�To be added once it is clear it belongs to command service

�To be added once it is clear it belongs to command service

�To be added once it is clear it belongs to command service

�To be added once it is clear it belongs to command service

�To be added once it is clear it belongs to command service

�To be added once it is clear it belongs to command service

�May need revision

�I think we need to define how this is done

[Answer] We will describe a formal definition of the GKB Generator and its concrete example.

�We will define. (Hanatani)

�Add text explaining the MN initiated

�I have added the caption

�update flagに関する記述を行う

�The format of SubgroupRange need be defined.

�The format need be defined.

�Official definitions of the formats need be defined.

�Missing?

Action point on Toru-san to review this section

�Not referenced in the text

�I have added the caption

�I have added the caption

.response, .confirmに入れる

Add �unchanged

�Probably we need to add some info for initial configuration in the MIB

i
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

PAGE
Copyright © 2012 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

0

Root Node

1

00

000

001

10

101

Depth = 4

0000

0001

0101

1000

1001

1101

1110

1111

