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1. Eigenvalue based sensing algorithms
Let 
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 be the continuous time received signal. Assume that we are interested in the frequency band with central frequency 
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and bandwidth
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[image: image4.wmf])

(

t

y

 at a sampling rate
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. In some applications, such as DTV detection, it is better that the sampling rate is larger than the channel bandwidth
[image: image6.wmf]W

. Let 
[image: image7.wmf]s

s

f

T

/

1

=

be the sampling period. The received discrete signal is then
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. There are two hypothesises:
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: signal not exists; and 
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: signal exists. The received signal samples under the two hypothesises are therefore respectively as follows:
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where
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 is the transmitted signal passed through a wireless channel (including fading and  multipath effect), and
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 is the white noise samples. Note that
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can be superposition of multiple signals. The received signal is generally passed through a filter. Let 
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 EMBED Equation.3  [image: image17.wmf]be the filter. After filtering, the received signal is turned to
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Let
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Then
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Note that here the noise samples 
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 are correlated. If the sampling rate 
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 is larger than the channel bandwidth
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, we can down-sample the signal. Let 
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 be the down-sampling factor. If the signal to be detected has a much narrower bandwidth than
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, it is better to choose
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. For notation simplicity, we still use
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 to denote the received signal samples after down-sampling, that is,   
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Choose a smoothing factor 
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A suggested value of
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 is about 10. Define a 
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Let
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 is a 
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Hermitian matrix. The matrix 
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 is not related to signal and noise and can be computed offline. If analog filter or both analog filter and digital filter are used, the matrix
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 should be revised to include the effects of all the filters. In general, 
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can be obtained to be the covariance matrix of the received signal, when the input signal is white noise only (this can be done in laboratory offline).  The matrix G and Q are computed only once and only Q is used in detection. 

Maximum-minimum eigenvalue (MME) detection 

Step 1. Sample and filter the received signal as described above.

Step 2. Choose a smoothing factor 
[image: image43.wmf]L

 and compute the threshold 
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 to meet the requirement for the probability of false alarm. 

Step 3. Compute the sample covariance matrix
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Step 4. Transform the sample covariance matrix to obtain
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Step 5. Compute the maximum eigenvalue and minimum eigenvalue of the matrix 
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 and denote them as 
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 and 
[image: image49.wmf]min

l

, respectively.

Step 6. Determine the presence of the signal based on the eigenvalues and the threshold: if 
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,  signal exists; otherwise, signal not exists

Energy with minimum eigenvalue (EME) detection 

Step 1. Sample and filter the received signal as described above.

Step 2. Choose a smoothing factor 
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 and compute the threshold 
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 to meet the requirement for the probability of false alarm. 

Step 3. Compute the sample covariance matrix
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Step 4. Transform the sample covariance matrix to obtain
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Step 5. Compute the average energy of the received signal
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, and the minimum eigenvalue of the matrix 
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Step 6. Determine the presence of the signal: if
[image: image58.wmf]min
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, signal exists; otherwise, signal not exists.

2. Performance of the algorithms

The threshold 
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in MME is determined by the ratio 
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and the required probability of false alarm (
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). When there is no signal, the ratio is not related to noise power at all. Hence, it does not have the noise uncertainty problem. The same is valid for EME. Both methods do not need noise power estimation. The performances of the methods are not only related to SNR but also related to signal statistic properties.

In the following the performances of the methods are given based on simulations, where
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 . Note that the SNR is always measured in one TV channel with 6 MHz bandwidth. For DTV, the results are averaged on the 12 specified DTV signals. Note that the performance of the methods can always be improved by increasing the sensing time. 

   (1) Simulations for DTV  (single channel sensing). The simulation is done at IF band. 

	method
	4ms
	8ms
	16ms
	32ms

	MME
	-11.6dB
	-13.2dB
	-15dB
	-16.9dB

	EME
	-10.5dB
	-12.1dB
	-14dB
	-15.8dB


Table 1: Required SNR for DTV signal detection (single channel)

       (2) Simulations for wireless microphone. The wireless microphone signal is down-converted into baseband. Table 2 gives the simulation results for wireless microphone signals (average on 3 types of signals: soft speaker, loud speaker and silence [2]). The settings and procedures for the simulation are as follows. Baseband microphone signal is generated. The signal is sampled at sampling rate 12 MHz. The signal is then filtered with a low-pass filter with 6 MHz bandwidth. The signal is passed through a multipath simulator (Rayleigh fading with 5 taps). White noise samples (sampling rate 12 MHz) are generated and passed through the same filter.  The signal and scaled noise are added together and then down-sampled (decimated) by a factor
[image: image65.wmf]2
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	method
	4ms
	10ms

	MME
	-21.0dB
	-23.1dB

	EME
	-16.4dB
	-18.4dB


Table 2: Required SNR for wireless microphone signal detection

       (3) Simulations for DTV (multiple channel sensing).  The method can be used to detect multiple consecutive channels at the same time. Here an example is given for detecting three consecutive channels at the same time. The input signal is the captured DTV signal (one channel is occupied and the remaining two channels are vacant). The signal is down-converted into baseband. The signal and noise are then filtered by a baseband filter with bandwidth 18 MHz. 

	method
	4ms
	16ms

	MME
	-17.5dB
	-20.9dB

	EME
	-15.6dB
	-19.1dB


Table 3: Required SNR for DTV signal detection (three consecutive channels)
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