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1 Introduction
Spectrum sensing is one of the core technologies of Cognitive Radio (CR) systems which provide a viable solution to the problem of sparsity of wireless spectrum. Nowadays, OFDM techniques are adopted by many existing or progressing wireless communication standards. Thus, a robust spectrum sensing algorithm for OFDM modulated signals is highly desired to implement CR when the primary signal uses OFDM modulation. Motivated by this demand, a Time-Domain Symbol Cross-Correlation based spectrum sensing algorithm (TDSC method) is presented in this text. The algorithm makes use of the property that the mean of the TDSC function of two OFDM symbols is not zero if they have embedded the same frequency-domain pilot tones. We use the DVB-T Standard [1] as an application example to illustrate the proposed spectrum sensing algorithm. The simulated channel environments are the Ricean and Rayleigh channels defined in the DVB-T Standard and the additive white Gaussian noise (AWGN) channel. Four CP ratios defined in the DVB-T Standard are simulated for the probability of false alarm set equal to 0.01 and the sensing time set equal to 50 ms and 5 ms. Simulation results show that the TDSC method can achieve a misdetection probability of 0.1 when the SNR equals -20.5 dB and -11.5 dB for all four CP ratios when the sensing times are 50 ms and 5 ms respectively. 

2 Statistical Development of the Cross-Correlation of Two OFDM Symbols

    Under the assumption that 
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, the length of the Cyclic Prefix (CP), is longer than the length of the time-invariant channel, the 
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where 
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 is the carrier frequency offset normalized to the subcarrier spacing. The phase 
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 is the length of an OFDM symbol. The parameter 
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 is the number of subcarriers, and 
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 is a sample of a complex additive white Gaussian noise (AWGN) process. We will assume that 
[image: image16.wmf]]

[

n

w

l

 is a circularly symmetric complex Gaussian random variable which has zero-mean and a variance of 
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. Most of the existing standards which adopt OFDM modulation [1][2][3] allocate pilot symbols in the frequency domain and these pilot symbols are called pilot tones. Let 
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, denote the sets of all possible pilot tone positions for the transmitted OFDM symbols. Assume that 
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. Here, we should note that the pilot symbols 
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 is a fixed constant and in some cases they change sign. Assume that the 
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 OFDM symbols have the same pilot tone positions and define  
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which is the Time-Domain Symbol Cross-Correlation (TDSC) function of two OFDM symbols. After some calculations and reasonable approximations, it can be shown that  
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The function 
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 represents a phase rotation caused by the carrier frequency offset. Note that from (3), 
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 simply consists of a constant term and a noise term. The fact that the mean value of 
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 is not zero makes it different from noise, and we are able to exploit this property to perform spectrum sensing.

3  TDSC Based Spectrum Sensing Algorithm
Let 
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 be the symbol index difference of two OFDM symbols. Note that in all OFDM standards, any two OFDM symbols which have their symbol index difference equal to 
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 have the same pilot tone positions. Let’s further define 
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where 
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 will be significantly reduced. Due to this property, we are able to perform spectrum sensing in very low SNR environments. For the convenience of derivation and readability, we rewrite 
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where  
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is the average received signal power in the pilot tone positions divided by 
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is a circularly symmetric complex Gaussian random variable. In addition, 
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which is the conjugate product of two accumulated TDSC functions. Then the phase term embedded in 
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where 
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 is a combining ratio. The problem arises as to how the 
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 should be chosen so as to achieve the best detection performance. Here, we use an intuitive criterion. That is, we choose 
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 such that the Kullback-Leibler divergence [4] is maximized for two hypothesis 
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. Under this criterion and when the SNR is very low, the combining ratio is obtained by  
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Before defining the decision statistic used for performing spectrum sensing, we should note that the lack of symbol timing information has not been considered in our derivation. When symbol timing is lacking, the usual approach is to try all possible symbol timing instances in order to compute (9). Then use the resulting maximum amplitude as the decision statistic. Due to the CP nature of the OFDM signal, our previous derivations are valid as long as the starting sample time instance is taken from any point within an intersymbol interference (ISI) free region [5]. Suppose that the maximum channel delay is 
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 as the starting sample time instances, there must be at least one point in the ISI free region. The function 
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 as starting sample time instances. Although this suboptimal approach will introduce some ISI effect when none of the 
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 points are in the ISI free region, the detection performance will not be degraded too much since the ISI introduced is small when the CP length is much larger than the root mean-square (RMS) delay-spread of the wireless channel. Consequently, we use these 
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 points as starting sample time instances to compute (9) and use the maximum amplitude as the decision statistic. Hence, the decision statistic is defined as  
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where 
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 as the starting sample time instance. The approach of performing spectrum sensing by computing Time-Domain Symbol Cross-Correlation function 
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 can be easily applied to any OFDM system employing pilot tones. However, the pilot tone patterns used in various standards are different. Thus, the spectrum sensing algorithms might be slightly different. In the next section, we use the DVB-T Standard as an example and describe how to perform spectrum sensing for DVB-T OFDM systems. Through this example, the spectrum sensing algorithm for other OFDM systems which embed pilot tones can be easily developed. 
4 Spectrum Sensing for DVB-T OFDM Systems
    According to [1], every transmitted OFDM symbol contains two kinds of pilot tones. One is that of acontinued pilot and the other is that of a scattered pilot. The positions of continued pilots are the same for all transmitted OFDM symbols. The scattered pilots are inserted every twelve subcarriers and their positions are shifted by three subcarriers for the next OFDM symbol so that the positions of scattered pilots are repeated every four OFDM symbols, hence we have that  
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for 
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. Therefore, there are four sets of pilot tone patterns for DVB-T OFDM. We should note that the number of scattered pilots is much larger than the number of continued pilots. For a 
[image: image92.wmf]K

2

-subcarrier mode, there are 
[image: image93.wmf]45

 continued pilot tones and 
[image: image94.wmf]141

 scattered pilot tones in an OFDM symbol. Therefore, we shall compute 
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 and 
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 is used as the starting sample time instance.
5 Simulation Results

 The performance of the spectrum sensor for the OFDM signals employing frequency-domain pilot tones is demonstrated by computer simulation. The simulation environments are AWGN, multipath Rayleigh fading, multipath Ricean channels specified in [1]. The performances on misdetection probability are evaluated for a false alarm probability equal to 0.01. The sensing time of 50 ms and 5 ms are simulated for four CP ratios defined in [1]. From Tables 1, we can see that the TDSC method can achieve a misdetection probability of 0.1 when SNR equals -20.5 dB for four CP ratios when the sensing time is set to 50 ms. As for a sensing time of 5 ms, the required SNR is -11.5 dB for achieving a misdetection probability of 0.1. Furthermore, the performance of the TDSC method is not related to the  CP ratios. 
	Sensing Time/
CP Ratio
	1/4
	1/8
	1/16
	1/32

	
	Required SNR (dB)

	50 ms
	-20.5
	-20.5
	-20.7
	-20.7

	5 ms
	-11.5
	-11.5
	-11.5
	-11.5


Table 1 Detection performance of TDSC method.
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