ITS Sensor Transfer Spec

Michael Cotton
Kenneth Baker

July 2016 www.its.bldrdoc.gov

Transfer Spec Mandate

* There is a broad set of missions for sensing
networks

 There is a broad set of requirements for sensors

 Multiple sensor types will be needed at different
locations and for different missions
* Ergo:

The transfer spec must be general enough to
accommodate the most basic of sensors as well as
the most sophisticated.

Classes of Sensors

Network of stationary, single function sensors

Network of mobile, single function sensors
— Live stream
— Store and forward

Network of stationary, programmable sensors
— Adaptive Antenna Control

— Signal Identification Functions

— Timing and Emitter Location Functions

— etc.

Network of mobile, programmable sensors
— Live stream
— Store and forward

Possible Sensor Network Functions

* Signal Detection
* Signal Identification
* Emitter location

— Timing constraints
— Antenna control

* Emitter tracking

— Timing constraints
— Antenna control

* Propagation data and control
* Environmental Data

Transfer Spec Functionality

Permit Sensor Control
— Two way communication

Permit Precision Timing of events
Permit real time streaming of data
Enable store and forward connectivity
Permit transfer of location information

Permit various types of data
— PSD

—1/Q

— Calibration Data

— Environmental, etc.

Existing Standards

* VITA49

— No two way communication and control

* |EEE 1900.6

— Currently under review

— Will likely need modification for our requirements

* 802.22.3

Current ITS Transfer Spec

e JSON based

ITS Message Format

 Messages in JavaScript Object Notation (JSON)
 Example LOC message:

{

"version": "1.0.16",
"messageType": "Loc",
"sensorld": "101010101",
"sensorKey": 846859034,
"time": 987654321,
"mobility": "Stationary",
"environment": "Outdoor",
"latitude": 40.0,
"longitude": -105.26,
"altitude": 1655,
"timeZone": "America_Denver"

Required Data Fields

version = Schema/data transfer version with the
major.minor.revision syntax [string]

messageType = Type of JSON message (“Sys” |
"Loc”| “Data”|"Capture-Event") [string of URL
unreserved characters]

sensorld = Unique identifier of sensor [string

sensorKey = Authentication key given out by
MSOD [integer]

time = Time [seconds since Jan 1, 1970 UTC] long
[integer]

Current Message Types

Sys Messages

Loc Messages

Data Messages
Capture-Event Messages

W 0 N U A WNPE

Sys Messages

Sys (System) message lists the critical hardware components of the sensor along with relevant RF
specifications

version = Schema/data transfer version with the major.minor.revision syntax [string]

type = Type of JSON message (”Sys”) [string]

sensorld = Unique identifier of sensor [string of URL unreserved characters]

sensorKey = Authentication key given out by MSOD [integer]

time = Time [seconds since Jan 1, 1970 UTC] long [integer]

antenna = data that describes the antenna (see Antenna object below)

preselector = data that describes RF hardware components in preselector (see Preselector object below)
cotsSensor = data that describes the COTS sensor (see COTSsensor object below)

calibration = data structure that describes the calibration measurement (optional, see Cal object below)

If processed = “False”, then the data streams are:

10a. noiseSourceOnPowers(n) = Raw measured data vector [dBm ref to input of COTS sensor] when known
source is on.

11a. noiseSourceOffPowers(n) = Raw measured data vector [dBm ref to input of COTS sensor] when known
source is off.

If processed = “True”, then the data streams are:

10b. noiseFigure(n) = Noise figure [dB] referenced to input of preselector.

11b. gain(n) = System gain [dB] referenced to input of preselector

w N

O N B

Loc Messages

The Loc message specifies the geolocation of the sensor.

Ver = Schema/data transfer version with the major.minor.revision syntax
[string]

Type = Type of JSON message (“Loc”) [string]

SensorlD = Unique identifier of sensor [string of URL unreserved
characters]

SensorKey = Authentication key given out by MSOD [integer]

t = Time [seconds since Jan 1, 1970 UTC] [long integer]

Mobility = Mobility of sensor (“Stationary” | “Mobile”) [string]

Lat = angle [degrees N] from equatorial plane (0 — 360) [float]

Lon = angle [degrees E] from Greenwich median (-180 — 180) ([float]
Alt = height above sea level [float]

TimeZone = Local time zone identifier (“America/New_York”, “America/
Chicago”, “America/Denver”, “America/Phoenix”, or “America/
Los_Angeles”) [string]

WONOULPRWNR

[
NP o

13.
14.
15.
16.
17.
18.
19.
20.
21.

Data Messages

The Data message contains acquired data from measurements of the environment using an antenna.

version = Schema/data transfer version with the major.minor.revision syntax [string]

messageType = Type of JSON message “Data” [string]

sensorld = Unique identifier of sensor [string of URL unreserved characters]

sensorKey = Authentication key for the sensor [string]

time = Time [seconds since Jan 1, 1970 UTC] [long integer] in the UTC time zone.

sysToDetect = System that measurement is designed to detect (“Radar-SPN43”| “LTE”| “None”) [string of URL unreserved characters]
sensitivity = Sensitivity of the data (“Low” | “Medium” | “High”) [string]

measurementType = Type of measurement (“Swept-frequency” | “FFT-power”) [string]

timeOfAcquisition = Time of 1st acquisition in a sequence [seconds since Jan 1, 1970 UTC] [long integer] in the UTC time zone.
acquisitionIindex = Index of current acquisition in a sequence [integer]

numOfMeasurements = Number of measurements per acquisition [integer]. Not relevant for streaming transfers (set to -1).

timeBetweenAcquisitions = Imposed time between acquisition starts [float]. This is the time between successive Data messages (not relevant for
streaming transfers).

timeBetweenStreams = Time between spectrums when data is sent as a stream via a tcp socket (relevant for streaming transfers).
overloadFlag = Overload flag(s) (0 | 1) [integer]

detectedSysNosiePowers = Detected system noise power [dBm ref to output of isotropic antenna] [float]

comment [string]

processed = Indicator on processing of data ("True"|"False") [string]

dataType = Data type ("Binary—float32", "Binary—int16", "Binary—int8", "ASCIl") [string]

byteOrder = Order of bytes for binary data ("Network" | "Big Endian" | "Little Endian" | "N/A") [string]

compression = Indicator on compression of data ("Zip" | "None") [string]

measurementParameters = Measurement parameters (elements listed in Objects section below)

If processed = “False”, then the data stream is
21a. rawMeasuredPowers(n, nM) = Raw measured data vector [dBm ref to input of COTS sensor]
If processed = “True”, then the data stream is
21b. measuredPowers(n, nM) = Measured power vector [dBm ref to output of isotropic antennal

Capture-Event Messages

The Capture-Event Message is used to POST an asynchronous event from the
sensor to the server.

Ver = Schema/data transfer version with the major.minor.revision syntax [string]
Type = Type of JSON message “Capture-Event” [string]

SensorID = Unique identifier of sensor [string of URL unreserved characters]
SensorKey = Authentication key for the sensor [string]

t = Time [seconds since Jan 1, 1970 UTC] [long integer] in the UTC time zone.

Sys2Detect = System that measurement is designed to detect (“Radar—SPN43” |
“LTE”| “None”) [string of URL unreserved characters]

Sensitivity = Sensitivity of the data (“Low” | “Medium” | “High”) [string]
mType = Type of measurement (“1_Q") [string]

DataType = Data type ("Binary—float32", "Binary—int16", "Binary—int8") [string]
mPar = Measurement parameters (elements listed in Objects section below)
Decode = Detection results (elements listed in Objects section below)
sampleCount: Number of captured samples.

D=

JSON Object Definitions: Antenna

Antenna = antennas parameters with elements

Model = Make/model (“AAC SPBODA-1080_NFi”| “Alpha AW3232”)
[string]

fLow = Low frequency [Hz] of operational range [float]

fHigh = High frequency [Hz] of operational range [float]

g = Antenna gain [dBi] [float]

bwH = Horizontal 3-dB beamwidth [degrees] [float]

bwV = Vertical 3-dB beamwidth [degrees] [float]

AZ = direction of main beam in azimuthal plane [degrees from N] [float]

EL = direction of main beam in elevation plane [degrees from horizontal]
[float]

Pol = Polarization (“VL”| “HL”| “LHC”| “RHC”, “Slant”) [string]
XSD = Cross-polarization discrimination [dB] [float]
VSWR = Voltage standing wave ratio [float]

|Cable = Cable loss (dB) for cable connecting antenna and preselector
[float]

1.

JSON Object Definitions: Preselector

fLowPassBPF = Low frequency [Hz] of filter 1-dB passband

float]
fHighPassBPF= High frequency
float]
fLowStopBPF = Low frequency
stopband [float]

Hz

Hz

of filter 1-dB passband

of filter 60-dB

fHighStopBPF = High frequency [Hz] of filter 60-dB

stopband [float]

fnLNA = Noise figure [dB] of LNA [float]

gLNA = Gain [dB] of LNA [float]

pMaxLNA = Max power [dBm] at output of LNA, e.g., 1-dB

compression point [float]

enrND = Excess noise ratio of noise [dB] diode for y-factor

calibration

JSON Object Definitions: COTSsensor

1. Model = Make and model ("Agilent N6841A" |
"Agilent E4440A" | "CRFS RFeye"| "NI USRP
N210"| "ThinkRF WSA5000-108" | "Spectrum
Hound BB60C") [string]

2. fLow = LowMinimum frequency [Hz] of
operational range [float]

3. fHigh = HighMaximum frequency [Hz] of
operational range [float]

4. fn = Noise figure [dB] of COTS sensor in contrast
to overall system [float]

5. pMax = Maximum power [dBm at input] of COTS
sensor [float]

JSON Object Definitions: Cal

CalsPerHour = Number of cals per hour [float]
Temp = Measured temperature inside preselctor [F] [float]

n u

mType: Type of measurement (“Swept-frequency”, “FFT-power”)
[string]

nM = Number of measurements per calibration [integer]

Processed = Indicator on processing of data ("True" | "False")
[string]

DataType = Data type ("Binary—float32"| "Binary—int16"| "Binary—
int8"| "ASCII") [string]

ByteOrder = Order of bytes for binary data ("Network", "Big
Endian", "Little Endian", "N/A") [string]

Compression = Compression of data ("Zip" | "None") [string]

mPar = Measurement parameters (elements listed in Objects
section below)

B W e

o

0 N

JSON Object Definitions: mPar

fStart = Start frequency [Hz] of sweep <Required for swept-freq> [float]
fStop = Stop frequency [Hz] of sweep <Required for swept-freg> [float]
n = Number of frequencies in sweep <Required for swept-freg> [float]

td = Dwell time [s] at each frequency in a sweep <Required for swept-
freg> [float]

Det = Detector: ("RMS" | "Positive” | "Peak" | "Average") <Required for
swept-freq> [string]

RBW = Resolution bandwidth [Hz] <Required for swept-freq> [float]
VBW = Video bandwidth [Hz] <Required for swept-freg> [float]

Atten = COTS sensor attenuation [dB] <Required for swept-freg> [float]

SampleRate = Sampling rate [Samples/second] <Required for I/Q
capture>

fc = Center frequency [Hz] \Required for I/Q capture>

LTE Decode

Note: <System2Detect,fStart,fStop> determine the MSOD band for
which we are capturing I/Q data. fc and CaptureEvent.sampFreq
determine the bandwidth of the I/Q samples. In the case of a swept
frequency sensor, there could be several capture events
corresponding to a single scan.

Decode = Decoded LTE information

algorithm = Algorithm used for detection ("coherent
filter"|"cyclostationary")

The following additional fields are relevant to the "coherent"
scheme for LTE detection:

— CelllD = Cell identification number [integer]
— SectorID = Sector identification [integer]
— linktype = ("uplink" | "downlink")

matched-

Transfer Mechanism

Secure socket transport
* Socket Setup

— The sensor is a pure client.
— The client initiates the connection to the server.

* HTTPS post

— Sensors may also intermittently connect and POST
data by connecting to the server

 Database (MSOD) Ingest Process

— Not part of the transfer spec

